
Mathematical Methods for Non-Intrusive Load Monitoring

by

Zachary Remscrim

S.B., E.E.C.S., S.B., Mathematics, M.I.T., 2009

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 2010

Copyright 2010 Massachusetts Institute of Technology

All rights reserved.

ARCHIVES
MASSACHUSES INSTITUTE

OF TECHNOLOGY

AUG 2 4 2010

LIBPARIES

Department of Electrical Engineering and Computer Science
May 17, 2010

Certified by

Dr. Steven B. Leeb
Thesis Supervisor

Accepted by _

Dr. Christopher J. Terman
Chairman, Department Committee on Graduate Theses

Author

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Mathematical Methods for Non-Intrusive Load Monitoring

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,77 Massachusetts
Avenue,Cambridge,MA,02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The calculation of the Discrete Fourier Transform (DFT) of a discrete time signal is a fundamental
problem in discrete-time signal processing. This thesis presents algorithms that use methods from number
theory and algebra to exploit additional constraints about a signal to aid in the calculation of its DFT. First,
an algorithm is presented that estimates the DFT of an unquantized signal given only a quantized version
of that signal. Second, an algorithm to estimate the value of one subset of DFT coefficients from knowledge
of another subset of DFT coefficients, for an appropriately constrained class of waveforms, is presented
and analyzed. Thirdly, an algorithm to classify electrical loads on the basis of a subset of the DFT
coefficients of load current is demonstrated. Finally an embedded system that calculates DFT coefficients
of measured current and makes this information available in convenient forms is considered.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

197

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Theory and Application of Non-Intrusive Load Monitoring
by

Zachary Remscrim

Submitted to the
Department of Electrical Engineering and Computer Science

May 17, 2010

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The calculation of the Discrete Fourier Transform (DFT) of a discrete time signal
is a fundamental problem in discrete-time signal processing. This thesis presents algo-
rithms that use methods from number theory and algebra to exploit additional constraints
about a signal to aid in the calculation of its DFT. First, an algorithm is presented that
estimates the DFT of an unquantized signal given only a quantized version of that sig-
nal. Second, an algorithm to estimate the value of one subset of DFT coefficients from
knowledge of another subset of DFT coefficients, for an appropriately constrained class
of waveforms, is presented and analyzed. Thirdly, an algorithm to classify electrical loads
on the basis of a subset of the DFT coefficients of load current is demonstrated. Finally,
an embedded system that calculates DFT coefficients of measured current and makes
this information available in convenient forms is considered.

Thesis Supervisor: Dr. Steven B. Leeb
Title: Professor, Laboratory for Electromagnetic and Electronic Systems

Acknowledgements

I would like to thank Professor Steven Leeb for his continuous help and guidance in

all my research endeavors, Warit Wichakool for his collaboration on the cross estimation

problem, and James Paris for many useful discussions. This research was funded by

the Grainger Foundation, the BP-MIT Alliance, the Office of Naval Research under the

ESRDC program, the MIT Sea Grant College Program, and by the MIT Center for

Materials Science and Engineering. The author also gratefully acknowledge the advice

and support of Dr. Manny Landsman.

Contents

1 Introduction 7

2 Quantization Effects on the DFT 11

2.1 Spectral Envelopes. 11

2.2 Q uantization . 12

2.3 Region of PQ-space corresponding to quantized samples 22

2.4 Calculations from regions of PQ-space 29

3 Cross Estimation 33

3.1 Introduction................. 33

3.2 Usable Constraints . 35

3.3 A First Attempt at a Solution . 37

3.4 A Refined Solution Using Cyclotomic Fields 41

3.5 Speed Improvement Using the Number Theoretic Transform 44

3.6 Ring of Integers of a Cyclotomic Field 46

4 Classification 52

4.1 Fundamental Problem . 52

4.2 Device M odeling . 54

4.3 Spectral Envelopes . 56

4.4 EM Algorithm . 69

5 An FPGA-based Spectral Envelope Preprocessor 77

5.1 Background.... 77

5.2 Utility of Spectral Envelopes . 80

5.3 FPGA-Based Spectral Envelope Preprocessor 88

5.3.1 Current and Voltage Measurement 89

5.3.2 ADC Controller . 90

5.3.3 Envelope Preprocessor....... 91

5.3.4 CF Controller. .. 96

5.3.5 W iFi Controller . 97

5.4 Flexibility .. 98

5.5 Prototype Results . 98

5.6 Applications........ 101

6 Conclusion 103

A Matlab Code for DFT Accuracy Improvement 105

B GP/PARI Code for cross estimation 111

C Verilog Code for FPGA-Based Spectral Envelope Preprocessor 120

Chapter 1

Introduction

This thesis presents and analyzes algorithms that solve a variety of long standing

problems in non-intrusive power system monitoring. Techniques from number theory

and algebra are applied to solve common power system monitoring problems, such as

accurately determining the harmonic content of the current drawn by an electrical load

given only a coarsely quantized version of that current and classifying an unknown load

on the basis of the current drawn by that load. The methods of this thesis can be

applied to a variety of other common discrete-time signal processing tasks that involve

computation of the Discrete Fourier Transform (DFT) of a signal.

Conventional sub-metering of individual electrical loads to detect problems and

conduct energy score-keeping has long been costly and inconvenient. A nagging problem

for over two decades has been that these costs increase swiftly as data requirements

become increasingly complex: "the high cost of equipment continues to limit the amount

of [usage] data utilities can collect. Additional drawbacks of the equipment now available

for collection of end-use load survey data range from their cost, reliability, and flexibility

to intrusion into the customer's activities and premises" [19].

Computational power and data transmission capabilities for commercial monitor-

ing and control systems have out-paced the problem of putting sensors in all the right

places. Various kinds of high-speed data networks provide convenient remote access to

control inputs and system operating information for embedded control and monitoring

systems. Similarly, microprocessors and associated technologies for these systems have

achieved astounding price/performance ratios. Obtaining useful information, however,

generally requires proper installation, maintenance, and interpretation of a vast collection

of sensors a daunting proposition even if the sensors are mass produced, micro-miniature,

and individually inexpensive.

A Non-Intrusive Load Monitor (NILM) can determine the electrical operating

schedule of a collection of loads from a single measurement of aggregate current flowing

to the loads. The NILM addresses the "sensor problem" for electric load monitoring by

extracting information about individual loads from limited measurements at an easy-to-

access, centralized location [1]. For example, the NILM can disaggregate and report the

operation of individual electrical loads like lights and motors from measurements made

only at the electric meter where service is provided to a building. The NILM is capable

of performing this disaggregation even when many loads are operating at the same time.

Because the NILM associates observed electrical waveforms with individual kinds of loads,

it is possible to exploit modern state and parameter estimation algorithms to remotely

verify and determine the condition or health of critical loads ([20] describes techniques

suitable for motor parameter estimation from a non-intrusive monitor, for example.). The

NILM has the potential to be a turn-key, enabling platform for future energy conservation

and monitoring in a smart grid that services both homes and commercial/industrial

facilities.

A NILM makes us of the "spectral envelope" representation of observed current

signals. This scheme considers samples i[n] of a current i(t), where a set of samples

are taken for each period of the line voltage waveform. The DFT of the set of samples

corresponding to each period is then computed. This produces a set of DFT coefficients

for each period. A spectral envelope is the time evolution of a single DFT coefficient. This

can be a very flexible basis for computing and tracking all sorts of useful metrics about

power consumption. Spectral envelopes estimate real and reactive power consumption

and harmonic content. The algorithms presented in this thesis can be applied to a variety

of useful spectral envelope calculations.

When working with a continuous-time signal i(t), it is often desirable to examine

its discrete-time samples i[n]. In any practical application, it is impossible to obtain i[n]

to infinite resolution. Instead, only the quantized values i[n] are available, where i[n] is

simply i[n] quantized to some finite number of bits of resolution. While the DFT of this

quantized signal can be redily computed, this is not a perfectly accurate statement of the

true frequency content of the unquantized signal i[n]. Unfortunately, since quantization is

a many-to-one operation, it is, in general, impossible to exactly reconstruct i[n] from i[n],

and thus it is also impossible to exactly determine the DFT of i[n] from i[n], because the

DFT is a bijection. However, with additional information about the structure of i[n], it

is possible to obtain a significantly more accurate estimate of the true frequency content

of i[n]. Additional constraints about i[n] restrict the class of possible i[n] that could have

produced the observed i[n]. Chapter 2 demonstrates an efficient algorithm that exploits

the structure of the mapping between regions of frequency space and quantized values

to improve the estimation of the frequency content of i[n] by applying these additional

constraints.

Chapter 3 considers the related question of using knowledge of the values of some

particular subset of frequency components to estimate the values of other frequency

components. Of course, due to the orthogonality of frequency components, the value

of one component is complete independent from the value of any other component, so

no non-trivial answer can be given to this question, in general. However, if certain

additional constraints about i[n] are known, then it will be possible to use information

about one set of frequency components to estimate the value of another set. The types

of constraints that make this possible are considered. An initial algorithm is presented

that applies those constraints to perform this estimation. This algorithm will be shown

to be numerically unstable, and a refined algorithm will be considered that completely

avoids numerical problems by using properties of cyclotomic fields.

In Chapter 4, the problem of identifying an electrical load from a subset of the

frequency content of its measured current is considered. The relationship between the

structure of the currents drawn by different loads in a class and the minimal subset

of frequency content needed to unambiguously identify a single load in that class is

examined. An algorithm for performing this classification task is discussed.

Chapter 5 details the design and operation of an implementation of an embedded

system that takes quantized samples i[n] of a current signal and computes the corre-

sponding spectral envelopes. The system is capable of delivering this information in a

variety of convenient forms, including via WiFi.

Chapter 2

Quantization Effects on the DFT

2.1 Spectral Envelopes

The spectral envelopes of current represent the harmonic content of the input

waveform for each line-locked period of the service voltage. Given N samples i[n] of a

waveform i(t) over one period, the samples can be expressed in terms of their spectral

content by

4n]l N-1 k Sin 27 <n +qkCOS 27k)
i~]=N p sin N N

k=0

where the spectral envelope values Pk and qk for that period are defined as

N-1 27kn
Pk = Zi[n] sin N

n=O

and

N-1

qk = E i [n]
n=o

(2.1)

(2.2)

(2.3)
27tkn

COS N .'

Here, k denotes the multiple of the line frequency to which a particular spectral envelope

corresponds; for example, on a 60Hz utility service, k = 1 corresponds to the 60 Hz

component and k = 3 to the 180 Hz component. The values of these spectral envelopes

are calculated for each period of the line voltage; the values at period m will be denoted

Pk [m] and qk [M]. With this definition, spectral envelopes can naturally be calculated

from the real and imaginary parts of the Discrete Fourier Transform (DFT) [2] of i [n]

over each period of the line voltage.

The complete collection of coefficients Pk and qk, for all k, determine the signal

i[n] over one cycle. The spectral envelope values can be understood to have meaningful

physical interpretations. For example, if the line voltage waveform consists of only a

single pure sinusoid, then pi corresponds to the real power consumed, and qi to the

reactive power.

2.2 Quantization

In any practical application, it is not possible to obtain samples i[n] of the wave-

form i(t) to infinite precision. Instead, only quantized samples are generally available. A

quantizer maps points in a continuous interval to a discrete set of points. The continu-

ous interval is partitioned into a set of regions, called quantization intervals, by a set of

points, called boundary points or interval endpoints. Each interval has a value associated

with it; these values are called representation points. The quantizer maps each value in a

quantization interval to the corresponding representation point. To formally specify the

operation of a quantizer, let M E N and define two sets of points A = {ai, ... , aM} and

B ={bo,..., bM} where aj, bj E R Vj and bj < bj+1 Vj E [0, M - 1]. The elements of the

set A are the representation points and the elements of set B are the boundary points.

Set B specifies a collection of M regions, R 1, . . . , RM where R1 = (bo, bi], R 2 = (bi, b21,

R3 = (b2, b3 , ... , RM = (bM-1, bMl. Define the quantizer function, Q : (bo, bM) -+ B,

such that Q(x) = bj where x C Rj. In the above definition, we restrict the domain of

the quantizer to the interval (bo, bM]. The operation of the quantizer is left undefined for

inputs outside of all quantization intervals. An alternate approach would be to define

the first and last quantization intervals to be R1 = (-oc, bi) and RM = (bM-1, oo], which

would have the advantage of having the entire real line as a domain. However, this def-

inition is not used here because unbounded quantization intervals would unnecessarily

complicate the analysis without providing any benefit because any practical application

involves quantizing values in a finite interval.

Let [n] denote the quantized samples of the waveform i(t). That is to say, i[n] =

Q(i[n]). In an analogous fashion to the above, these quantized samples can be expressed

in terms of their spectral content by

- I N-1 7k -n
i[n] = N sin (N)+ cos (N (2.4)

k=o

where the spectral envelopes Pk and qk for that period are defined by

N-1

P = (i[n] sin (2.5)
n=O

and

N-1

qk E Z n] cos (N . (2.6)
n=O

It is useful to consider the relationship between the Pk's and qk's that would be

desirable to have and the Pk's and qVs that one be obtained in practice. To this end,

first notice that there is a one-to-one relationship between the set of all Pk's and qk's

and the N samples i[n] (because the DFT is a bijection). Similarly, there is a one-to-one

relationship between the set of all Pk's and qk's and the N quantized samples i[n]. On

the other hand, there is a many-to-one relationship between the N unquantized samples

i[n} and the N quantized samples i[n] (the quantizer maps many unquantized values to

the same quantized value, because all points in a quantization interval are mapped to

the same representation point). Thus, there is a many-to-one relationship between the

set of all Pk's and qk's and the set of all Pk's and Vts, which means it is impossible to

uniquely reconstruct the Pk's and qk's from the Pk's and 4k's.

Despite this non-uniqueness problem, one can still consider how accurately the

Pk's and qk's can be estimated from the Pk's and q 5s. One simple method is to use each

Pk as the estimate for the corresponding Pk and each qk as an estimate for the 4k. Fig. 2.1

shows Pi values as a function of actual pi values for a pure 60 Hz in-phase sinusoid of

varying amplitudes, with N = 128 and 4-bit samples. Values of pi are marked with a

+. The line pi = pi is included for reference to illustrate how close each actual pi value

is to the corresponding pi value. Clearly, using pi as an estimate for pi is reasonably

accurate, though there is noticable error.

It is possible to obtain better estimates for the Pk's and qk's. As noted above,

there is a one-to-one relationship between the set of all Pk's and qk's and the N samples

in time i[n]. For notational convenience, let the space of all possible values of the Pk's

and qk's be referred to as PQ-space. Clearly, PQ-space is isomorphic to RN because each

frequency component can have an arbitrary real value. Also, as noted above, many sets

of N samples i[n] map to the same set of N samples i[n]; thus, many points in PQ-space

map to the same set of N samples i[n]. These points form a region in PQ-space. The

following lemma states certain useful properties of these regions.

'~PI
0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p1

Figure 2.1: pi vs p1.

Lemma 1. Let A be the set of points in PQ-space that corresponds to some arbitrary set

of quantized samples i[n]. Then A has the following properties:

1. A is connected.

2. A is convex.

3. A is a bounded polytope.

Proof. 1. Assume, for purpose of contradiction, that A is not connected. By definition,

this means that A can be expressed as the union of two non-empty open sets, as

shown in Fig. 2.2. We can select three colinear points, x, y, z, as shown in the figure.

Consider moving along the line segment from x to y to z. Each point in PQ-space

has a corresponding unique set of unquantized samples, i[n]. Thus, as we move

along this line segment, the corresponding set of unquantized samples change. To

be precise, the direction specified by motion along the line segment corresponds to

a particular ratio of spectral components (the Pk's and qk's). Moving in a given

direction causes the unquantized samples to change by adding spectral content in

the specified ratio. For example, if both x and y lied along the p1 axis, then moving

along the line segment causes the pi content of the samples to change, but all other

spectral content is left unaffected. Similarly, if x and y lie in the p1 qi plane along

the line pi = 2qi then moving along the line segment causes the pi and qi content

to change (with the pi content changing by twice as much as the qi content), and

all other spectral content to remain the same.

Every point in A corresponds to the same collection of quantized samples, i[n. This

means that as we move along the line segment the first time an unquantized sample

will cross a boundary point of any quantization interval is at the boundary of the set

containing x and y. At this point, some sample, say i[k), will leave the quantization

interval whose representation point is i[k] and move to either the quantization

interval immediately above or the one immediately below. In particular, if the

added spectral content at sample index k (in the ratio specified by moving along

the line segment from x to y) is positive (that is to say, if we consider the time

domain samples corresponding to just the added spectral content from moving

along the line segment, and the sample at index k is positive) then this sample

moves to the quantization interval immediately above and if the added spectral

content at sample index k is negative then this sample moves to the quantization

interval immediately below. The added spectral content cannot be 0 at sample

index k because, if it were, then motion along the line segment would not cause

i[k] to move at all, which contradicts the fact that i[k] crossed a boundary point

of a quantization interval. In any case, whichever direction i[k] moved along the

path from x to y, it must move in the same direction along the path from y to z

Figure 2.2: A is connected.

and so 4k] can't return to the original quantization interval at z. Thus, i[k] would

be in different quantization intervals at x and z. This means that x and z must

correspond to different sets of quantized samples, which contradicts the definition

of A. This contradiction immediately implies that A is connected.

2. The fact that A is convex follows from an analogous argument. Assume, for con-

tradiction, that A is not convex. Then we have the situation shown in Fig. 2.3.

We can again select three colinear points, x, y, z, as labeled, and consider traveling

along the straight line path specified. We again have the problem that once a sam-

ple point leaves a quantization interval, it can never return, and so x and z again

correspond to different quantized samples. This contradicts the definition of A and

so A must be convex.

Figure 2.3: A is convex.

3. To see that A is a polytope, consider the boundary between A and another neigh-

boring set of points B in PQ-space that corresponds to a different set of quantized

samples. By the above, both A and B are convex, and so the boundary must be

a portion of a hyperplane. The hyperplane divides PQ-space into two half-spaces

where A only includes points from one of the half-spaces and B only includes points

from the other half-space. Thus, A is the intersection of the half-spaces specified by

all of the boundary hyperplanes. This intersection forms, by definition, a polytope.

The polytope is necessarily bounded because the boundary points of the quanti-

zation region i[n] bound the range that i[n] can be in while still remaining in A,

Vn. It is worth noting that PQ-space is, itself, unbounded (as noted above, it is

isomorphic to R N), but the only polytopes of interest in PQ-space are those that

correspond to quantized samples i[n), which are all bounded.

Dl

One possible way to improve the accuracy of the estimation of the Pk's and qk's

from the Pk's and 4k's is to use the fact that there is a one-to-one correspondence between

quantized samples i[n] and regions in PQ-space. Moreover, as will be shown shortly, it

is possible to determine the region from the quantized samples. Since it is also clearly

possible to determine the quantized samples from the Pk's and 7 k (using the DFT), the

Pk's and 4k's can be used to determine the region in PQ-space that the true (unquantized)

samples came from. Once this region is determined, it can be used to estimate the Pk's

and qk's in several ways. A particularly simple estimate would be to use the centroid

of the region of PQ-space. Another technique involves the use of additional information

about the behavior of real electrical loads. As observed in [1], many electrical loads draw

current profiles that consist of only a small number of significantly non-zero spectral

envelopes, for example the lst,3rd,5thand 7th (in both p and q). If it is known that only

a small number of the Pk's and qk's are non-zero, this knowledge could be exploited by

considering only the intersection of the region in PQ-space with the subspace spanned by

the non-zero Pk's and qk's and then taking the centroid of the intersection. This second

estimation technique is considered here.

To better understand the structure of these regions of PQ-space, consider the

following concrete example of a signal for which only pi and pa are nonzero. Let i[n] =

0.51 sin(2j)+0.23 sin(6 [) denote N = 16 4-bit samples of a signal. In practice, of course,

both the number of samples N and the bit resolution will generally be significantly higher

than in this example; these values are chosen to give a simple illustration of the structure

of PQ-space. Figure 2.4 shows the underlying waveform i(t), the sample values i[n), the

quantized samples i[n] as well as the upper and lower bounds on the true value of each

i[n] given the observed i[n] (these are simply the upper and lower boundary points of

the quantization interval that each i[n] is mapped to). The signal i[n] corresponds to a

Possible True Values Given Quantized Values

Actual Waveform
Quantized Values
Upper Bound

/6 + 0 Lower Bound

0.2
M

N 0

E

z*-0.2

-0.4-

-0.6- o 0

-0.8 1 1 1
0 2 4 6 8 10 12 14 16

Sample number

Figure 2.4: An example of quantization boundaries and representation points.

point in PQ-space, namely the point (.51, .23) in the P1 P3-plane. The quantized signal

i[n] corresponds to a region in PQ-space. This region is depicted in Fig. 2.5. Finally,

Fig. 2.6 shows a collection of regions of PQ-space in the neighborhood of the above point.

As can be seen from these figures, the regions in PQ-space are highly non-uniform.

The following section presents an algorithm that determines the region in PQ-

space corresponding to quantized samples i[n]. The effectiveness of the technique is

illustrated in Fig. 2.7. As was the case in the example shown in Fig. 2.1, a family of pure

60 Hz in-phase sinusoids of varying amplitudes, are sampled with N = 128 4-bit samples.

The estimates produced by the second estimation technique discussed above are marked

with + symbols. Again, the reference line showing the true pi value is shown to illustrate

the error. Clearly, this method produces more accurate estimates than simply using P,

as an estimate for p1.

Quantization Region
0.32

0.3-

0.28-

0.26-

& 0.24

0.22

0.2-

0.18-

0.16 -
0.48

Quantization Regions

II I IIII

0.4 0.45 0.5 0.55 0.6 0.65

Figure 2.6: A set of neighboring regions in PQ-space.

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

P,

Figure 2.5: A single region in PQ-space.

0.5

0.45

0.4

0.35

o 0.3

0.25 -

0.2 -

0.15-

0.1'
0.35

estimated p, vs p,

c-O.b
_0
c 0.5-
E
a 0.4-

0.3-

0.2-

0.1 -

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p,

Figure 2.7: Estimated p1 vs pi using the centroid of the region of PQ-space corresponding
to observed i[n].

2.3 Region of PQ-space corresponding to quantized

samples

Given a particular set of quantized samples i[n), the goal is to determine the

corresponding region in PQ-space that contains all possible values of the Pk's and qk's

that could produce the observed quantized samples. Call this region H. As shown in

Lemma 1, H is a convex polytope, and so is completely determined by its vertices. Thus,

a potential goal could be to determine the coordinates of these vertices. This is rather

undesirable due to the fact that H is an N-polytope and may have a large number of

vertices. Fortunately, it is unnecessary to determine the vertices of H because, as noted

above, we only require the intersection of H with the (comparatively) low dimensional

subspace given by the Pk's and qk's that are not identically zero. Let Z denote this

subspace. Let W denote the number of Pk's and qk's that are not identically zero (Z is

a W dimensional subspace). Let R denote this intersection. Clearly R is also a convex

polytope (because it is the intersection of a convex polytope with a subspace) but it is

of a potentially lower dimension (it is only a W-polytope). Thus, the goal will be to find

the vertices of R.

The following analysis will consider only non-empty regions R. Empty regions

R can be safely ignored because they arise from polytopes H that do not intersect Z.

These polytopes are of no interest because, by assumption, we encounter only quantized

samples of waveforms described by points in Z.

As a first step, notice that given i[n], it is easy to find a single point in R. This

can be done by first producing any set of unquantized samples, i[n], that quantize to i[n]

(that is to say, i[n] = Q(i[n]), Vn) and satisfy the constraint that the point must lie in

Z. This is easy because it only requires finding a feasible solution to a system of linear

inequalities in W (not N) variables. Next, take the DFT of i[n] to produce the Pk's and

qk's. These Pk's and qk's specify a point that lies in H because, by construction, the Pk's

and qk's correspond to i[n], which quantizes to i[n]. This point is in Z and so the point

lies in ZUH=R.

This point is not necessarily the centroid of R (and is, of course, quite unlikely

to be the centroid of R), but it is still a point in R. Thus, this point could serve as

an estimate of the true spectral content if one wished to avoid the extra computational

cost of determining the vertices and eventually the centroid of R. While this estimate is

generally not as good as using the centroid, it is, in general, still a significant improvement

over using the p,'s and U 's as estimates for the Pk's and qk's.

Next, an algorithm will be presented that determines the vertices of R from any

point in R. The rough idea of the algorithm is to first find a single vertex of R, then

find all of its neighboring vertices, then all of their neighboring vertices and so on until

every vertex is found. This algorithm will require the use of two subroutines: FIND-

FIRST-VERTEX(y) and FIND-NEIGHBORS(y). These subroutines will be described

first.

The FIND-FIRST-VERTEX(y) subroutine finds a single (arbitrary) vertex of R,

where y E R. As noted above, R is a (bounded) convex polytope. By definition, this

means that R is the intersection of a collection of half-spaces. Each half-space corresponds

to the region of space that satisfies the set of linear constraints that each of the N

points i[n] lie in the quantization interval i[n]. To be precise, define values 11,. . . , lN and

U1, ... , UN such that the lower and upper boundary points of the quantization interval

whose representation point is i[n] are i and Un, respectively. Then we have the following

2N linear constraints:

i[n] > l, Vn (2.7)

and

i [n] <Un, Vn. (2.8)

Due to the fact that we have the constraint that each i[n] must be less than

each upper boundary point but strictly greater than each lower boundary point, R is

neither closed nor open, because it contains only part of its boundary (the portion that

corresponds to spectral content for which the corresponding i[n] satisfies i[j] = uj, for

some j). However, because we are only interested in the vertices of the polytope, we

can consider only the closure of R (the smallest closed set that contains R). This set

is defined by the following 2N linear constraints, which are identical to the above 2N

linear constraints with the exception that all inequalities have been made non-strict. In

the remainder of this analysis, R will refer to the closure of the original R defined above.

i [n] ;> ln,Vn (2.9)

and

i[n] < zUn,Vn. (2.10)

Interior points of R are points at which all inequalities are strictly satisfied (no

inequality is satisfied with equality). The boundary points of R are those points for

which at least one of the constraints are satisfied with equality. Vertices of R are local

maxima for the number of constraints satisfied with equality (infinitessimal movement

from a vertex in any direction that remains in R will decrease the number of satisfied

constraints). FIND-FIRST-VERTEX locates a vertex by starting with any point in R

and moving that point in such a way as to satisfy increasingly many constraints with

equality. Let the constraints be numbered 1, . . . , 2N in arbitrary order, let Zi denote the

subspace of R in which constraint i is satisfied with equality. This algorithm is shown in

pseudocode below.

FIND-FIRST-VERTEX(y)

x <-y

for i= 1 to 2N do

if x E Zi then

s <-s n z,

end if

end for

repeat

select arbitrary s C S

x' <-- x + ks where k > 0, k is the smallest value such that x' lies in the boundary

of Rf {x' is the translation of x that satisfies at least one new constraint}

for i = 1 to 2N do

if x' E Zi and x 0 Zi then

S S n zi

end if

end for

x <- x'

until dim(S) = 0

return x

The algorithm keeps track of a single point x, and a space S, which are updated

by a series of moves. x is initialized to the point y known to be in R and S is initialized to

R. Next, S is updated to be the subspace of R that is the intersection of all Zi for which

x satisfies constraint i with equality, by intersecting S with Zi. The space S represents

the space of directions in which x can be translated such that every constraint initially

satisfied with equality is still satisfied with equality after the translation. We then move

along some direction s E S until at least one new constraint is satisfied with equality. x

and S are then updated. We continue moving x until dim(S) - 0, which corresponds to

a point at which any infinitessimal translation of x in any direction (in R) would cause

some constraint that is currently satisfied with equality to no longer be satisfied with

equality. Thus, when dim(S) = 0, we are at a local maxima for the number of satisfied

constraints, and so x is a vertex of R. Equivalently, the condition dim(S) = 0 can be

viewed as expressing the fact that the space that satisfies the Zi constraints found in

each iteration is a 0-dimensional space (a point).

The purpose of FIND - NEIGHBORS(y) is to find all vertices that are neigh-

bors of the vertex y. By definition, two vertices x and y are neighbors if they are connected

by an edge. Thus, we can find all neighbors of y by moving along each edge incident to

y until a new vertex is reached. Moving along an edge is accomplished by selecting a

constraint that is satisfied with equality at y and relaxing it (allowing it to be satisfied

with inequality) by moving along the edge. The algorithm is shown in pseudocode below.

FIND-NEIGHBORS(y)

for i 1 to 2N do

if y C Zi then

S <- S U zi
end if

end for

for all Zi in S do

if dim(S\Zi) == 1 then

Assign s to be an element in S\Zj such that moving y in the direction s keeps

constraint i satisfied.

x <- y + ks where k > 0, k is the smallest value such that x lies in the boundary

of R {x is the translation of y that satisfies at least one new constraint}

L - L U {x}

end if

end for

return L

This algorithm makes use of two sets: S consists of the constraints satisfied with

equality at y, L is the set of neighbors of y that is being determined. The algorithm first

builds S by checking which constraints are satisfied with equality. Then, it finds each

edge incident on L by using the fact that each edge is a one dimensional subspace given

by S\Zj, for some Zi. It then finds a neighboring vertex x by moving along that edge

and then adds x to L.

Finally, we can describe the algorithm FIND - ALL - VERTICES(y) which

finds all vertices of R given some y E R. This algorithm is shown in pseudocode below.

FIND-ALL-VERTICES(y)

V <- {}

B <- {FIND - FIRST - VERTEX(y)}

repeat

V V U B

L <- {

for all b E B do

L +- L U (FIND - NEIGHBORS(b) n V)

end for

B <- L

until |B| = 0

This algorithm builds up a set V of vertices of R. It operates in a series of stages,

where in each stage it operates on newly discovered vertices, stored in B. Initially,

B contains the first vertex of V, found by FIND-FIRST-VERTEX. In each stage, the

elements of B are added to V. Then, the set L is constructed which consists of all

neighbors of vertices in B that are not already in V. Then, B is set to L and the cycle

repeats until no new vertices are found. This process terminates because there are a

finite number of vertices and each vertex can only be newly discovered once. It finds all

vertices because, after iteration i, all vertices that are at distance < i have been found,

and every vertex is a finite number of steps from every other vertex (the graph with the

vertices and edges of R is connected).

A Matlab implementation of the above algorithm is included in Appendix A.

2.4 Calculations from regions of PQ-space

The previous section illustrated how to find the vertices of a polytope R = H n Z,

where H is an N-polytope in PQ-space that contains all points with the same quantized

samples i[n] and Z is a W dimensional subspace. Using the vertices of R, we can compute

both the volume of R, the centroid of R, and the maximum distance between the centroid

Figure 2.8: Example polygon.

and any point in R. The centroid is useful because it can be used as a relatively accurate

prediction of the true spectral content of the unknown i[n] that quantizes to the known

i[n]. The volume and maximum distance are useful for analyzing the accuracy of the

prediction algorithm.

In order to compute the volume of the polytope R, we can partition R into a set

of simpler polytopes, and take the sum of their volumes. Before solving this problem in

arbitrary dimension, consider the following example in 2 dimensions. Fig. 2.8 shows a

convex 2-polytope (polygon) R.

R can be partitioned into a set of triangles by selecting an arbitrary point x in

the interior of R and drawing line segments from x to each vertex of R, as shown in

Fig. 2.9. The area of R can then be computed by computing the area of these triangles

and summing the results.

This concept can be generalized to an arbitrary W-polytope R by partitioning

R into W-simplexes. A W-simplex is an W-dimensional convex polytope with W + 1

Figure 2.9: Example polygon with interior point.

vertices. It can be thought of as the generalization of a triangle to higher dimensions.

This partitioning is accomplished by again selecting an arbitrary point x in the interior

of R and drawing line segments to each vertex of R. These line segments are the edges

of the W-simplexes. The volume V of a W-simplex with vertices {vo, ... , Vw} is given

by

V = det V1 - VO V2 - vo . .. vw-1 - vo VW - VO , (2.11)

where the determinant is taken on an W x W whose jth column consists of the

elements of vj - vo.

The centroid of R can be also be computed through a decomposition into sim-

plexes. To be precise, we can partition R into a set of simplexes, as above, compute

the centroids of those simplexes, and then take the weighted average of those centroids

(weighted by the volume of the centroid). This weighted average is the centroid of R.

The centroid C of a W-simplex with vertices {v, ... , VW} is given by

1w
C = v.. (2.12)

W + 1 .
j=O

The maximum distance D between any point in the region and the centroid C,

provides a bound on the absolute maximum error between the actual spectral content of

a point that produced quantized samples i[n] and the estimated spectral content C. To

determine D, we can use the fact that the point in R at maximum distance from C will

be one of the vertices of R (because R is a bounded polytope). Thus, D is given by

D = max |C - vjI. (2.13)
jE[O,W]

The computations discussed above are only a sample of the sort of computations

possible about properties of the region R using only the vertices of that region. The

determination of the vertices of R, using the algorithm of the previous section, conve-

niently allows the efficient computation of a variety of other useful quantities, such as

the maximum distance between any point in R and the centroid and the expected dis-

tance between a randomly chosen point (according to some known distribution) and the

centroid.

Chapter 3

Cross Estimation

3.1 Introduction

The previous chapter considered the question of accurately estimating the spectral

content (the collection of Pk's and qk's) of a signal i[n] given the spectral content Pk and

qk of the quantized signal i[n]. This was accomplished by using additional information

about the structure of i [n], specifically, the fact that the true i[n] consists of non-zero

spectral content at a (known) limited set of frequencies. This chapter will consider the

related question of estimating one subset of pk's and qk's from knowledge of another

subset. In general, of course, nothing at all can be said about the value of any particular

pj or qj given knowledge of any other P's and qk's because all of the Pk's and qk's are

independent. However, much as was the case in the previous chapter, there will often be

additional information about the structure of i[n] that will allow this cross-estimation.

Before discussing how to actually perform this sort of estimation, it is useful to

consider a particular problem that motivates the desire to be able to use the values of

known spectral envelopes to estimate unknown spectral envelopes. In many settings, the

observed current signal i[n] will be an aggregate current signal. That is to say,

i[n] - i [n],

where each ij [n] is the current drawn by a single electrical load. This situation arises when

monitoring a (potentially large) collection of electrical loads by taking measurements of

only the aggregate current. In this setting, one often desires to know the spectral content

of an individual ij [n]. If we let Pj,k and qj,k denote the kth spectral envelope of ij [n, then

by the linearity of the DFT, we have

Pk = ZP,k and qk = qj,k.
j j

Thus, the goal here would be to use knowledge of the Pk's and qk's to estimate the

individual Pj,k's and qj,k's. Fortunately, the current drawn by different types of electrical

loads will often consist of different sets of spectral content [1]. For example, consider

the case when i[n] consists of the sum of two different individual current signals, ii[n]

and i2 [n], where the only non-zero spectral content of f'i[n] is pi,1 and qi,1 and the only

non-zero spectral content of i2 [n] is P2,1 and P2,5. Here, the sets of non-zero spectral

content are only partially overlapping. Thus, q1 = qi,1 and p5 = P2,5, and so knowledge of

the aggregate qi and p5 allows the corresponding spectral content of the individual loads

to be determined. Unfortunately, pi = Pi,1 + P2,1, so it is not immediately clear how to

use the aggregate value pi to determine the individual values pi, and P2,1. This chapter

will attempt to answer this question by using the attainable qi,1 to estimate pi,1 and P2,5

to estimate q2,5 , using additional information about the structure of i1 [n] and i2 [n].

3.2 Usable Constraints

There are many different sorts of constraints that one could apply to a signal i[n].

This chapter will examine a method that uses constraints of the form

as= 0, (3.1)
k

where

Sk = Pk + iqk-

Here, for convenience, we express spectral content as complex values Sk rather

than separately as real and imaginary components Pk and qk. Each ak E Z[(N], where

(N is a primitive Nth root of unity (that is to say, (NN = 1 but (j # 1 for j < N), and

Z[(N) denotes adjoining (N to the integers Z. Thus each a E Z[(N] is of the form

N-i

a -3 E j(
j=0

where bj E Z. We restrict constraints to this form to allow an efficient and accurate

solution method, discussed in section 4 of this chapter, that exploits the properties of

cyclotomic fields.

While this family of constraints certainly doesn't capture every possible constraint

that could exist on a signal i[n], it is still a rather general class that includes many useful

constraints. For example, the constraint Sk = 0, for any particular k, is clearly in this

class (this corresponds to setting ak 1 and aj = 0, Vj 4 k). Similarly, the constraint

i[j] = 0, for any particular point sample j is in the class because the Fourier synthesis

equation expresses i[j] as a linear combination of the Sk, where the coefficients are powers

0.08 -

0.06 -

0.04 -

0.02 -

0

-0.02 -

-0.04 -

-0.06 --

-0.08

0 50 100 150 200 250 300 350 400
Sample number

Figure 3.1: The current drawn by a Variable Speed Drive (VSD) over one line-cycle.

of some (N. Similarly, any constraint of the form 1j cji[j) = 0, for any subset of sample

indices J and any c3 E Z[(N] are also in this class. This last family of constraints includes

"symmetry" constraints, such as the statement i[j] = i[l] or i[j] = -41], for any sample

indices j, 1.

It should be noted that we could have instead reasonably defined each ak to be an

element of Q[(N] rather than Z[(N]. However, restricting ourselves to Z[(N) is without

loss of generality because any constraint where bj E Q could trivially be transformed into

a constraint with only integer coefficients by multiplying by a common denominator.

This class of constraints is selected because it permits an efficient and accurate

solution method, while still being general enough to capture real world constraints. To

demonstrate the generality of these constraints, consider the following example waveform,

shown in Fig. 3.1, that shows the current drawn by a variable speed drive (VSD).

This waveform clearly allows many constraints of the above form to be applied.

For example, the large regions of zeros allow constraints of the form i[j] = 0, and the

symmetry of the non-zero regions allow symmetry constraints. Moreover, it is known [6]

that, for this waveform, even harmonics and the so-called "triplen" harmonics (multiples

of 3) are approximately zero, which allows constraints of the form Sk = 0, for k a multiple

of 2 or 3. For clarity, this particular concrete example will be used throughout the chapter

to illustrate the various techniques considered.

3.3 A First Attempt at a Solution

The goal will be to express a single unknown spectral envelope s, in terms of a

collection of known spectral envelopes sj, for j E J. As usual, we consider samples i[n] of

some periodic waveform i(t). Unlike in the previous chapter, in this situation we do not

actually take as input i[n] but rather just the sj, Vj C J. We also assume that we have

sufficient knowledge of i(t) to generate constraints. Rather than viewing the number of

samples per period, N, as some fixed value determined by sampling, here we can set N

based on the number of constraints we desire. The idea is that we know the general form

of i(t), and so can correctly write down a family of constraints for any sampled signal

i[n] consisting of N samples, for any N. For example, if faced with the current waveform

i(t) of the VSD, Fig. 3.1, we can immediately determine which indices j should have the

constraint ij] = 0, for any number of samples N by simply checking if the jth of N

samples would land in a region of zeros. The key point is that we can set N arbitrarily.

Every constraint of the form expressed in (3.1) sets a linear combination of the

sk's to 0, where each coefficient ak E Z[(N]. Thus, we can form a matrix equation of the

form

0 = AS, (3.2)

where S is a vector of the sk's, and A is a matrix with entries in Z[(N) where each row

represents a single constraint. We can order the entries of S in any order; place the

unknown s, first, and the known sj, j C J last, with all other spectral envelopes in

arbitrary order. With this ordering of S, the first column of A corresponds to coefficients

multiplying s, and the last IJI columns of A correspond to coefficient multiplying sj,

j E J. We wish to set A to be of size M x (M + JI), for some M. This is desirable

because if we place A in reduced row echelon form (RREF), the first row of the resulting

matrix will express an equation of the form

sr +E c s = 0, (3.3)
jEJ

which gives an expression for the unknown s, in terms of the known sj, j E J, as desired,

where c. C Q[(N].

To assure that we can form the M x (M + JI) matrix A, we will further make

the assumption that i(t) is bandlimited, that is to say, i(t) contains no spectral content

outside of some finite band. This means that, for any N, there exists a single constant

No such that at most No of the Sk of i[n] will be non-zero. We will also make the

assumption that i(t) has a region of zeros, some sort of symmetry, or any other structure

that allows a number of constraints of the above form, that increases with N, to be

written. The number of such valid constraints grows with N because, if for example, i(t)

has a region of zeros, then as N increases, more and more sample points will fall in that

region. Consequently, as N increases, the number of constraints on i[n] increases but the

number of non-zero si does not increase past some finite limit.

To be precise, let No denote the finite limit on the number of non-zero spectral

envelopes implied by the fact that i(t) is bandlimited. Then consider increasing N,

starting at No. As N increases, increasingly many Sk become defined, but all the "new"

Sk = 0. At the same time, we have increasingly many constraints on i[n). This means

that the total number of constraints on the Sk increases with N faster than the number

of defined Sk (every new sk introduced comes with the constraint Sk = 0, but we also add

other new constraints, such as zero constraints on i[n], or symmetry constraints). Thus,

at some point, we have N - |J| constraints on the N spectral envelopes. We can then

write the matrix equation

0 = AS

where A is a M x (M + JI) matrix, with M = N - |JJ.

Many of the constraints are simply of the form sk = 0, and so we can delete

each column corresponding to such an Sk, remove the entry from S that corresponds to

Sk and delete the row of A that corresponds to the constraint. This will improve the

speed of subsequent computations on the matrix by decreasing its size, without hurting

the resulting accuracy. It should be noted that this idea does not only work on a single

N, but rather all sufficiently large N because as N increases further, we only get more

constraints relative to the number of spectral envelopes. Whenever we have "extra"

constraints (that is to say, more constraints than would fit in a M x (M + JI) matrix),

we can simply not use the extra constraints. In particular, we can choose to ignore

constraints of the form sk = 0 when we have extra constraints. This is desirable as the

constraints Sk = 0 are sometimes only approximate because the waveform i(t) is only

approximately bandlimited. One could expect accuracy of the resulting estimation to

increase with N because as N gets larger and larger, we are able to use (relatively) fewer

constraints of the form sk = 0

% error vs N
70

60

50

40 -

30 -

10

0
100 150 200 250 300 350 400

N

Figure 3.2: Percent error using 85 and s7 to estimate si.

This idea was applied to samples i[n] of the current waveform i(t) depicted in

Fig. 3.1 to estimate si from knowledge of 8 and 87. In Fig. 3.2, the error of the resulting

estimation is plotted as a function of N. While this does obtain somewhat low error,

and the error decreases with N initially, as expected, the error actually increases without

bound for very large N. This is due to a numerical problem. The computation to

put A in RREF, by performing Gaussian elimination involves floating point division by

numbers that get smaller with increasing N. This substantially limits the effectiveness

of this technique. To avoid this problem, the following section will consider a different

solution method in which all computation is done, effectively, over the integers. This will

completely eliminate numerical problems.

3.4 A Refined Solution Using Cyclotomic Fields

As noted in the previous section, transforming the constraint matrix into RREF

by computing with floating point arithmetic is numerically unstable. Fortunately, this

problem can be completely avoided by recognizing that the elements in the matrix, ini-

tially as well as at every step of the RREF computation, have a certain special property:

they are elements of a cyclotomic field. A cyclotomic field is simply an algebraic number

field generated over Q (the rationals) by a primitive root of unity. Algebraic number

fields (called number fields by some authors) are finite (and therefore algebraic) exten-

sions of Q. Elementary properties of the cyclotomic fields can be found, for example,

in [3). The Nth cyclotomic field is simply Q[(N] (this denotes adjoining (N to Q). Any

element y E Q[(N can be expressed in the form

N-i

y = c (N, (3.4)
j=0

with cj E Q. Clearly, every element of the matrix A above is an element of Q[(N1.

Moreover, since the cyclotomic field is a field (with the usual arithmetic operations)

it is closed under addition, subtraction, multiplication and division. As the process of

performing Gaussian elimination only involves these arithmetic operations, we see that

the matrix, at any point during the computation, will only consist of elements from a

cyclotomic field. Clearly, elements of the cyclotomic field can be represented exactly (by,

for example, storing the rational coefficients cj that define each element y), and so it is

possible to perform the computation exactly.

A straightforward way to perform computations over the cyclotomic field would

be to store the collection of rational coefficients cj that represent a given element in

each entry of the matrix. Then, perform Gaussian elimination as usual, substituting the

cyclotomic field operations in place of arithmetic on scalar quantities. A slightly different

approach will be taken here for computational efficiency reasons.

There is a natural isomorphism between the Nth cyclotomic field and Q [X] /fN (X),

where Q[X] denotes the ring of all polynomials in one variable with rational coefficients,

and fN(X) denotes the Nth cyclotomic polynomial [3]. The Nth cyclotomic polynomial

is defined by

fN(X) =7(X -W),
WEQ

where Q consists of all primitive Nth roots of unity in C. Thus, we can view each element

of A as an equivalence class of polynomials over a single formal parameter. That is to

say, each particular element of A can be viewed as the set of all polynomials with rational

coefficients that are equivalent, modulo fN(X), to a single specific polynomial (this spe-

cific polynomial is different for different entries of the matrix). To better understand this

isomorphism, notice that any y C Q[(N] is given by (3.4) as a linear combination of pow-

ers of (N. In some sense, we can view y as being the value of a polynomial g(X) E Q[X]

evaluated at (N, where
N-1

g(X) = cjXj.
j=0

The coefficients of the polynomial are the same as the coefficients used to define y.

Moreover, we could view y as being the value of any polynomial h(X) E Q[X] at (N

where h(X) = g(X) + fN(X)k(X), with k(X) E Q[X] being arbitrary because fN(X),

the Nth cyclotomic polynomial, has (N as a root. The family of h(X) is simply the

equivalence class of polynomials (in Q[X]) that are congruent to g(X) modulo fN(X).

While this helps make clear the structure of the isomorphism, it is important to remember

that the X in each polynomial is only a formal parameter; it will not take any values.

Using this idea, we can store in each entry of A an arbitrary lift of the equivalence

class of polynomials represented by that entry (that is to say, store any single polynomial

in the equivalence class). We can store a polynomial by storing its coefficients. Notice

that fN(X) is of degree #(N) [3], where #(N) is Euler's totient function and is defined to

be the the number of integers j < N where j is relatively prime to N. Thus, we have a

slight reduction in storage over the initial scheme of storing the coefficients expressed in

(3.4). However, since #(N) = O(N), this is actually not an asymptotic improvement in

storage, but still might be useful in practice. To perform Gaussian elimination, we simply

replace the ordinary arithmetic operations that Gaussian elimination would perform on

scalars with the corresponding operations on polynomials (addition becomes addition of

coefficients, multiplication becomes convolution of coefficients, and so on) with the added

fact that we perform operations modulo fN(X). Again, we see a slight computational

improvement by using the polynomial representation rather than the initial representa-

tion because we are only operating on #(N) coefficients rather than N coefficients. This

is again not an asymptotic improvement, but might still be of value in practice. In any

case, addition and subtraction are O(N), and multiplication and division are O(N 2) by

the naive algorithms. Since Gaussian elimination involves O(N 3) arithmetic operations,

we have a runtime bound of O(N), which is still reasonable due to the relatively small N

involved. Multiplication and division will be improved to 0(N log N) in the next section

by using the Number Theoretic Transform and properties of multiplying and dividing

polynomials. This will improve the runtime bound to O(N 4 log N).

The above algorithm performs all computations exactly to produce a relation of

the form s, = bjsj, where bj E Q(N, which expresses unknown s, in terms of

known sg. Of course, actually evaluating s, from the sj will involve computing this sum

with floating point arithmetic (because sj will likely not be elements of Q(N but rather

arbitrary values in C). Fortunately, this only involves a small number of floating point

% error vs N

0
50 100 150 200 250 300 350 400

N

Figure 3.3: Percent error using s5 and s7 to estimate s1 with the refined method.

additions and multiplications and so does not exhibit the numerical instability of the

initial solution technique.

This procedure was applied to samples i[n] of the current waveform i(t) depicted

in Fig. 3.1 to estimate si given Ss and s7, as in the previous section. The results are shown

in Fig. 3.3. As can be seen, there is no longer a numerical instability. The implementation

was done in GP/PARI; the code is included in Appendix B.

3.5 Speed Improvement Using the Number Theo-

retic Transform

While the algorithm presented in the previous section is sufficiently fast to be

practical, there is still room for improvement. This section will consider a method to

improve the speed of the basic arithmetic operations of multiplication and division. Mul-

tiplication and division of polynomials involves convolution and deconvolution, respec-

tively, of coefficients. This immediately suggests using a procedure like the Fast-Fourier

Transform (FFT). The convolution theorem [2], states that, for x= x 1 , x 2 , ... , xN and

y = Y1, Y2, .-- , YN, we have

FFT(x * y) = FFT(x)FFT(y).

As the FFT can be computed in O(N log N) time, this immediately yields a O(N log N)

algorithm for multiplication and division of polynomials. Specifically, given polynomials

f(X) = Z f3Xi and g(X) = Ej gjXi, we have f(X)g(X) = h(X) -- E hjX3, where

h = Ek fk * gj-k, which is a convolution. Thus, we can multiply f(X) and g(X) by

taking the FFT of the coefficients of f(X) and g(X) separately, multiplying the FFTs

elementwise, and computing the inverse transform (again, using an FFT). The result will

be the coefficients of h(X). Division functions in an analogous fashion, with the only

modification being that we divide FFTs elementwise.

An immediate problem with the above scheme is the fact that it involves com-

puting FFTs with floating point operations. Since our goal is perform all computations

exactly, we would have to determine the proper exact representation of coefficients re-

turned by the above procedure. While this is, in principle, possible, it adds unnecessary

extra work. As an alternative, consider the Number Theoretic Transform (NTT).

Given a sequence x = x1, ... , XN where xj E Z, the NTT of x is a sequence

X = X 1,.. , XN where

Xk =Zxwnk mod p, (3.5)
n

and

x = X7io-" mod p, (3.6)
k

where s E N is a free parameter that will be set later, p = sN+ 1 is a prime, and W = r7',

where r1 is a primitive sNth root of unity, modulo p. The NTT also obeys the convolution

theorem, but has the advantage that all computation is done over the integers. One can

also immediately define a "Fast" NTT, analogous to the FFT, which uses an identical

divide and conquer approach to compute an NTT in O(N log N). Thus, we can use

an NTT in place of the FFT in the above procedure to enable the fast computation of

multiplication and division.

To do this correctly, we must set the prime p to be larger (by a factor of 2)

than any coefficient in the polynomials input to multiplication and division, as well as

any coefficient in the output polynomial (the value of each coefficient in the output

polynomial can trivially be bounded in terms of the coefficients of the input polynomial).

This is done by setting s appropriately. This is necessary to assure that if we take

the representative in [- , 2] of each congruence class, we will obtain the correct

coefficient (this is just saying there there is no ambiguity introduced by working modulo

p; that is to say, p is large enough so that knowing the value of the coefficient modulo

p immediately yields the value of the coefficient). Code to perform these calculations is

included in Appendix B.

3.6 Ring of Integers of a Cyclotomic Field

This section will consider an alternate scheme for estimating an unknown s, in

terms of known sj, j E J. We begin with some terminology from algebraic number

theory; see, for example [4]. Let K denote a number field (in our application, K will be

a cyclotomic field, but the following definitions apply to all number fields). We say an

element x E K is integral over a ring B if we have an equation of integral dependence:

x" + bn_ 1x"-1 +... + bix + bo = 0, (3.7)

where bi E B, Vi. This is simply the statement that x is a root of a monic polynomial

with coefficients in B. We call the collection of elements in K that are integral over

the ring Z the integers of K. These elements form a ring (with the usual addition and

multiplication operations), but not a field (in general, we cannot divide elements). This

ring is called the ring of intgers of K.

For a cyclotomic field, the ring of integers is simply Z[(Nl [3], and so every element

of the constraint matrix A (see (3.2)) is an element of the ring of integers of a cyclotomic

field. The previous algorithm uses Gaussian elimination to transform A into RREF, at

which point the first row of the matrix corresponds to the equation 8 , + EjEJ CAS- 0,

where c3 E Q[(N]. Here, the idea will be to work in the ring Z[(N and ultimately produce

an equation d'sr + E>ej djsj = 0, where dj E Z[(N], Vj E J and d' E Z[(N]-

Of course, we cannot simply use Gaussian elimination because that requires di-

vision, which cannot (in general) be done in a ring. The idea will be to use a similar

process where we skip the step of dividing a row by its leading element (this is the only

step of Gaussian elimination that involves division). To be precise, in ordinary Gaussian

elimination, we operate column by column, transforming the matrix so that each column

has only a single 1 and all other entries 0. For each column, we select a row with a

non-zero element in that column to operate on, call this row m. The sequence of steps

performed by standard Gaussian elimination, for row m, is shown in pseudocode below.

In the following, let leading(m) return the index of the first non-zero entry in row m, let

R and C denote the number of rows and columns, respectively, of the matrix, and let a

denote the entry in row i column j.

c <- leading(m)

p +- amc

for j= 1 to C do

am <-- amj/p

end for

for all i E [1, R] \ {m} do

q <- aie

for j 1 to C do

ai= aij - amj q

end for

end for

This will be modified to the following:

c <- leading(m)

p <- amc

for all i E [1,R] \{m} do

q <- aie

for j 1 to C do

ai= aijp - amjq

end for

end for

In the original Gaussian elimination algorithm, we operate on row m by first

dividing each entry of row m by the leading element, then, for every row i f m, we

subtract a multiple q of row m from row i, where q is simply ac, the element in row i in

the same column as the leading element of row m. This has the effect of clearing column

c, except for amc, which is set to 1. Every step of this process preserves the validity

of the system of equations because we are only either dividing a row by a constant or

subtracting a multiple of one row from another row. This indeed preserves the validity

of the system of equations represented by the matrix because each row i of the matrix

corresponds to an equation Ej aijsj = 0, and thus dividing by a constant only divides all

coefficients by the same constant; similarly, subtracting a multiple of one row to another

corresponds to subtracting a multiple of one equation from another. The only changes

are that we now do not divide row m by its leading element but instead multiply each

row i by the leading element of row m and then subtract the same multiple q of row m

from row i. We are allowed to multiply row i by the leading element of row m (or, in fact,

by any constant) because again row i represents an equation of the form EZ aijss = 0,

which is unaffected by multiplying the coefficients by any non-zero constant.

All operations in this new scheme can be done over a ring, and so the above algo-

rithm could indeed be used to produce a relation d's, + Eje djsj = 0, as desired. One

significant problem, however, is that if the above algorithm is used as described, the coef-

ficients of the polynomials stored in each entry of the matrix will become extremely large.

In such a situation, it will no longer be appropriate to treat the individual arithmetic op-

erations on coefficients as 0(1) (these are the operations discussed above to compute the

coefficients of a polynomial that results from the addition or multiplication of two other

polynomials). Essentially, this problem occurs because, as noted above, multiplying each

row by any non-zero value does not change the equation the row defines. In the above

procedure, each row, in some sense, accumulates extraneous multiplying factors. It will

be desirable to remove these factors during the computation and thereby "simplify" each

row.

One obvious idea would be to divide each row by the greatest common divisor

(GCD) of all the elements (where here the elements are equivalence classes of polyno-

mials, or equivalently elements of Z[(N]). Despite the fact that we cannot, in general,

divide elements in a ring, we can still certainly divide any element by one of its divisors.

However, we still encounter difficultly in computing the GCD.

Over the integers, one can compute the GCD using Euclid's algorithm. The

integers are a ring. Euclid's algorithm can be generalized to many other rings, which all

called Euclidean domains. This includes the rings of integers of many number fields. To

determine if Euclid's algorithm can be extended to the ring of integers of a particular

cyclotomic field, we must first introduce a bit more terminology, see [4]. An integral

domain is a ring with more than one element that has no zero divisors. An ideal A of

a ring R is a subset of R such that if ai, a2 E A and r E R, we have ai + a2 E A and

rai c A (that is to say, it is closed under addition, and also under multiplication by any

element in R). An ideal is thus clearly also a ring. We say an ideal A is generated by

elements g1 ,.. . , gk E R if A is the intersection of all ideals in R that contain gi, ... , gk.

A principal ideal is an ideal generated by a single element. A principal ideal domain is

an integral domain that only has principal ideals.

We can use the fact that a ring of integers of a number field is a Euclidean domain

if and only if it is a principal ideal domain (PID) [4]. Unfortunately, as shown in [5],

the set of N such that the ring of integers of the Nth cyclotomic field is a PID is finite.

In fact, for N > 90, the ring of integers of a cyclotomic field is never a PID [5]. This

eliminates the possibility of using Euclid's algorithm.

In some sense, the failure to be a PID can be viewed as the failure for unique

factorization to hold. For the integers, and more generally for any PID, we have the

Fundamental Theorem of Arithmetic which states that every element can be uniquely

factored into a product of powers of primes and a unit, where a unit is simply an invertible

element (i1 in Z) and a prime is an indecomposable element (the usual primes in Z).

While we cannot uniquely factor elements of a non-PID ring of integers of a cyclotomic

field, we can accomplish the same goal by factoring ideals.

We make use of Dedekind's Theorem [4] which states that in the ring of integers

of any number field, we can uniquely factor any ideal into the product of powers of prime

ideals. In fact, this holds for a more general class of rings called Dedekind rings, but this

is not needed here. The idea will then be to factor out common terms from a row of the

matrix by, for each element in the row, computing the principal ideal generated by that

element, adding all the principal ideals together, and, if the result is a principal ideal,

taking its generator. Every element of the row will be divisible by this generator, and so

we can divide out that common factor. This algorithm is discussed in detail in [7].

This simplification procedure allows the above algorithm to be used as an alterna-

tive way to compute a relation between an unknown s, and known sj, j C J. Both this

algorithm and the original algorithm compute this relation exactly, and so the accuracy

of both algorithms is identical.

Chapter 4

Classification

4.1 Fundamental Problem

The goal of a classification algorithm is to determine when each load in a collection

of electrical loads turns on and off. The data used to make this determination is the

aggregate current drawn by the collection of loads and the line voltage supplied to the

loads. To begin to develop such an algorithm, a simpler fundamental problem will be

examined first. Consider a black-box that contains a single, unknown electrical load

drawn from a collection of electrical loads. The goal is to determine which load is in the

black-box by examining the current drawn by that load when the unknown device is first

turned on.

To be precise, let L = {li, . . . , lM} denote a set of M electrical loads. A single

load, 1 is selected from L according to some probability mass function pj(ly) = Pr[l = lj);

that is to say, pj(l) denotes the probability that load i is selected. At this stage, pl(l 3)

will be assumed to be known. Let I = (io,... ,iN-1) denote the ordered N-tuple of

current samples drawn by the load I when it is turned on. These samples are collected

uniformly in time, with n samples per period of the line voltage. It should be noted that

I is a truncated version of the infinitely long vector of current samples that would be

obtained by sampling the current waveform for all time. It will be assumed that that is

some sufficiently long period of time such that ceasing sampling after this period of time

will not cause the loss of any identifying information; that is to say, all relevant features

of the current samples are contained in finitely many of the infinite collection of current

samples.

The classification algorithm, A, takes input L and I and produces a prediction 1

of the identity of the load 1. The goal is to maximize the probability that 1 = 1, which

is, by definition, accomplished by setting

7 = argmaxlELPr[1 -Ij].

Using elementary probability, this can be rearranged as

1 = argmaxl3jLPr[Itl 1j]Pr[- 1j] (4.1)
Pr [I]

In the above equation, Pr[l =j] is simply the apriori probability that load l is in

the box, which is given by pl(ly). Pr[Ill = lj is simply the probability of generating the

current N-tuple I given the device 1j. It should be noted that, even for a single fixed load

1j, many different current N-tuples I could be measured due to noise and other factors

(for example, a real electrical load might draw different current waveforms in warm and

cold environments). Pr[I] is the apriori probability that I will be the observed data,

which is given by

Pr[I] = Pr[Ill = l]Pr[l = is].

Thus, in principle, the classification algorithm is quite trivial. Given a sufficiently

detailed model of the electrical characteristics of every load, one could calculate Pr[Ill =

1j] for any load I E L and, using (4.1), make the best possible prediction 7 of 1. In

practice, however, such a detailed model of the underlying physical properties of the

loads is often unavailable. That is to say, while determining the physical properties of

the devices may be possible, it is likely undesirable to perform a detailed analysis of a

load before the algorithm could be used to identify that load. An alternative to having

these detailed models, considered in the next section, is to construct a simplified model

using observed data.

4.2 Device Modeling

As shown in the previous section, the development of a classification algorithm

requires certain pieces of information about the collection of electrical loads. In particular,

it is necessary to know the conditional probability distribution of current, Pr[Ill = 1j],

for each ij E L and every possible current vector I, as well as the probabilities pj(lh)

that each load 1j E L will be the load in the black-box (which, up to this point, has

been assumed to be known). While it is true that Pr[Ill = 1j] could be calculated from

sufficiently detailed apriori knowledge of the electrical characteristics of load 1j, it is,

as noted in the previous section, often impractical to do so. This section will consider

methods to estimate these unknown probabilities experimentally.

Consider a modified version of the black-box load problem stated above. In this

modified version of the problem, there are two phases: a training phase and a classification

phase. In the training phase, data is gathered on the loads that will be used to estimate

the unknown probabilities. In the classification phase, these estimated probabilities will

be used in classification algorithm of the previous section to classify an unknown load in

the black-box. To be precise, the training phase will consist of some large number K of

trials. In each trial, a load 1 E L is selected according the probability distribution pl(l);

the load is then turned on, and data is collected. Throughout the training phase, the

loads are not operating in a black-box; that is to say, the identity of each load selected

is known.

The data from the training phase can then be used to estimate the probabilities

Pr[Ill = lj] for each load 1j E L. A straightforward, but entirely impractical, way to

do this would be simply count the number of times that any particular load 1 produced

the current vector I, which will be denoted K, 1 , and the number of times that load 1

was selected, which will be denoted K, and then estimate Pr[Ill = lj] by the quantity

K1 3 . This is completely impractical because, even though the number of possible current

vectors is finite, it is extremely large. If each of the N samples of current is taken to b

bits of precision, then there are 2 bN possible values of I. It would not be reasonable to

even store 2bN estimates for each of the M loads, much less actually produce all of the

estimates.

A more practical approach is to assume that the distributions Pr[Ill = l] have

some simple functional form with only a few unknown parameters. A particularly useful

form arises from assuming that each load 1j has a corresponding characteristic current

vector I that it would draw under ideal circumstances. That is to say, in the complete

absence of noise and measurement inaccuracy, if device 1j were turned on, the measured

current would be Ij. Noise will be modeled as additive white Gaussian noise. Without

loss of generality, this noise can be assumed to be zero-mean, because if the noise had a

non-zero mean, the mean could be estimated accurately over some long period of time

and subtracted out. In this setting, only the characteristic current vectors {I} for each

of the loads 1j E L, as well as the variance o' of the noise (a Gaussian is completely

determined by its mean and variance) needs to be estimated. This reduces the task of

estimating M2bN parameters to estimating only MN + 1 parameters.

Additionally, it should be noted that, in this setting, it is no longer necessary to

assume that the probability mass function p(lyj) is known. This is because pi(ly) can

be approximated by K, the proportion of trials in the training phase in which load 1j

appears.

4.3 Spectral Envelopes

Thus far, the problem of classification has only been considered using raw current

as the source of data. This section will explore classification algorithms that instead

make use of the Discrete Fourier Transform (DFT) of the raw current and the spectral

envelope representation. For notational convenience, this chapter will use a slightly

different definition of spectral envelopes than the original definition given in Chapter 2.

In particular, a complex form of spectral envelopes is defined. All results in this chapter

would apply equally well to spectral envelopes given by the original definition.

The DFT is defined as follows. Given a sequence of n complex numbers, ,.. . ,1

the DFT transforms this sequence into the n complex numbers X0 , . .. , X,_1 where

n-1

Xx- -- 7xre kj.
Xk Zxj= en

j=O

Similarly, the inverse Discrete Fourier Transform (IDFT), which expresses the original

sequence in terms of the transformed sequence, is given by

n-1

xy = N Xeik.

k=O

Using this definition we can form spectral envelopes So(t),..., Sn_ 1 (t) which are

defined by
n--1

Sk (t) e7rtk ES it ~jkc 42

j=0

Thus, the kth spectral envelope at time t is simply the kth term in the DFT of the

sequence it,.. , it+n, which are the samples of current over one line-cycle worth of time

(there are n samples of current taken per line cycle of voltage), rotated by an appropriate

factor. It should be noted that, because t can take any (integral) value, the sequence of

n samples used to produce Sk(t) at any particular time t will not necessarily start or end

at zero-crossings of the line voltage.

The spectral envelopes are defined in this way so that they will correspond to

meaningful physical quantities. For example, under the assumption of a stiff, harmon-

ically pure line voltage, Q{S 1 (t)} corresponds to real power, R{S1(t)} corresponds to

reactive power, G{S 2 (t)} corresponds to power drawn at the second real harmonic, and

so on.

In considering developing a classification algorithm that uses spectral envelope

data, instead of raw current data, an immediate question is the accuracy of the resulting

classifier. To frame this question properly, consider a slightly modified version of the

black-box experiment from Section 1. Again, a randomly selected load 1 E L is placed in

a black-box and data is recorded when this load is turned on. The change is that now,

instead of recording I, the sequence of N current samples, we record the power spectral

envelopes.

Consider a classification algorithm E that takes as input L and So(t), . .. , S (t)

for t E [0, N - n] (the input consists of the set L and values of each of the power spectral

envelopes at each point in time) and outputs a prediction 7 of the identity of the load 1

with the goal of maximizing the probability that 1 = 1. Clearly, the best prediction that

E can make is

I argmaxljELPr[l = lj|{Sj(t)|j E [0, n - 1], t E [0, N - n]}].

The natural question to ask is which of the two predictions (made by each of the

two algorithms A and E) has the higher probability of being correct. The answer to this

question is that the predictions made by A and the predictions made by E have, in all

cases, the same probability of being correct. This is shown by the following lemma that

relies on the fact that both A and E are, by definition, optimal algorithms. That is to

say, they produce the prediction that is most likely given their input (L and I in the case

of A and L and {Sj (t)|j E [0, n - 1], t E [0, N - n]} in the case of E).

Lemma 2. For algorithms A and E, as defined above, let lA and 7E denote the predictions

made by algorithms A and E, respectively. Then, Pr[lA = 1] = Pr[lE = 1] always.

Proof. Assume that there is some case for which the prediction of E is better (more likely

to be correct) than the prediction of A. It is immediately clear that the input to E can

be calculated from the input to A (by applying equation 2 above). Thus, it is possible to

construct a third algorithm C which takes input L and I (the same input that A takes),

produces {Sj(t)|j E [0, n - 1], t E [0, N - n]}, runs E, and outputs the prediction made

by E. By the assumption that E will, in some case, return a better prediction than A, it

follows that C would return a better prediction than A, which contradicts the optimality

of A. This contradiction immediately implies that there is no case in which algorithm E

could produce more accurate predictions than algorithm A.

Similarly, assume that there is some case for which the prediction of A is better

than the prediction of E. Again, it is possible to produce the input to A from the

input to E. This is due to the fact that the DFT is invertible; thus, given knowledge of

So(t),. . ., S,_ 1 (t) for all time the vector I can be produced. Therefore, there exists an

algorithm D which, on input L and {Sj (t)|j G [0, n - 1], t E [0, N - n]} could produce

a better prediction than E by using A, which contradicts the optimality of algorithm

E. This contradiction implies that there is also no case for which the prediction of E is

better than the prediction of A. O

Given that algorithm E performs exactly as well as algorithm A, the natural next

question to ask is whether there is any motivation in recording power spectral envelope

data instead of raw current data. As will soon be demonstrated, a potential motivation

is compression. To see this, consider the total amount of storage space needed for the

input to algorithm A and the input to algorithm E. In both cases, the input includes L,

and so this portion of the storage space requirement is the same in both cases. The other

part of the input for algorithm A is the current vector I which consists of N samples,

each of which are taken to a precision of b bits, and so storing the vector I requires Nb

bits. Thus, in order for power spectral envelopes to be useful as a form of compression,

they must require fewer than Nb bits to store.

Unfortunately, simply storing all of the spectral envelopes used as input to E

would take considerably more space to store. Each of the n spectral envelopes must be

recorded at N - n + 1 values of t; if 2b bits are used to record each of these spectral

envelope values (b bits for each of the real and imaginary parts of the spectral envelopes)

then a total of 2bn(N - n + 1) would be required.

However, there is still hope due to the tremendous redundancy in the spectral

envelopes. That is to say, despite the fact that so many bits are used to store the

spectral envelopes, their actual information content is much smaller. To see this, recall

that the power spectral envelopes can be determined from the current vector I. Thus, it is

never necessary to store more power spectral envelope values than are needed to uniquely

determine I. This allows two types of redundancies to immediately be exploited. Firstly,

since I is real (it consists of measured current values, and has no imaginary part), it must

be the case that Xj = X-*_, where * denotes conjugation, (this is simply a property of

the DFT) and so Sj(t) = Snj(t)*e(n~". Thus, knowledge of {S2(t)|j E [0, i - 1},t E

[0, N - n] } would suffice. The second sort of redundancy arises from the fact that the

DFT is invertible. Thus, given knowledge of the DFT of n sequential values of current

(for example, from time t to t+n - 1, as is used to construct {Sj (t)|j E [0, n - 1]}) would

suffice to reconstruct those n values of current. Thus, it is only necessary to record the

Sj (t) at a spacing of n in time. Combining both of these redundancies, only half of the

n spectral envelopes need to be recorded, and only at Npoints in time. If each of the

spectral envelopes are recorded to 2b bits of precision (b bits for the real part and b bits

for the imaginary part) this will require exactly Nb bits, the same amount of storage

space necessary to store the raw current values.

This has not accomplished any sort of compression because the same amount of

storage space is needed to store spectral envelope values as was needed to store raw

current values. In order to achieve actual compression, fewer spectral envelope values

must be stored. It can be hoped that there is some additional redundancy in the data

produced by real electrical loads that would allow fewer spectral envelope values to be

stored without loss of information.

As observed earlier, the power spectral envelopes correspond to real physical quan-

tities (i.e. f{S 1 (t)} corresponds to real power). Thus, one could hope that it is the case

that real electrical loads only draw power at a few harmonics, and so only a few of the

spectral envelopes would be non-zero. If this were indeed the case, then a large amount

of storage space could be saved by not storing envelopes with a constant 0 value. Unfor-

tunately, as will soon be shown, even if only a few spectral envelopes are non-zero during

steady-state portions of a waveform, many spectral envelopes will be non-zero during

transient events.

Consider the following simple current vector shown below, in Fig. 4.1.

3
Current

2

0

-2

-3
0 0.5 1 1.5 2

Time(Cycles)

Figure 4.1: Current Vector.

This current vector I consists of samples over two cycles of the line voltage. It is

given by the equation

1(t) { sin(St) t E [0, 1]
2 sin(qt) t E (1,2]

For clarity, Figure 2, below, shows views of this current waveform over three windows.

The three windows are each of length one cycle (n data points) and start at an offset of

, and 1 cycles, respectively.

. . . Current -

0 0.2 0.4 0.6 0.8
Time(Cycles)

(a) First window.

. . . Ourrent- -

0.6 0.8 1 1.2 1.4
Time(Cycles)

(b) Second window.

Current

1 1.2 1.4 1.6
Time(Cycles)

(c) Third window.

1.8 2

Figure 4.2: Current Vector split into windows.

3

2

0

-2

-3

3

2

00

-2

-3

3

2

0

2

-3

In this example, it can easily be shown that S1, S,_1 and {S2k~k E [0, n - 1]}

are all not constantly equal to 0. In particular, S1(0) # 0, Sn_1(O) # 0 and S2k()

0, Vk E [0, n - 1]. Despite the fact that this example is extremely specific, it illustrates

an important general phenomenon. The current vector I is a piecewise function where,

over each cycle, it consists of a single pure harmonic. Therefore, if we examine the power

spectral envelopes at times given by the start of cycles of the line voltages (that is to

say, at times when the power spectral envelope is calculated from samples all within the

sample line cycle) then only two harmonics will be non-zero (only one of which needs to

be recorded as each of these harmonics could be calculated from the other). However, if

we examine the spectral envelopes at times given by the middle of line cycles (when half

of the current values used to calculate the spectral envelopes come from two adjacent

cycles) then we see that all harmonics whose parity differs from the single pure harmonic

are non-zero.

Despite the fact that, as shown above, many spectral envelopes may not be iden-

tically equal to 0, this does not preclude the possibility that the vast majority of spectral

envelopes are 0 at all points of interest. Recall that, as noted above, there is a great

deal of redundancy in the spectral envelopes. In particular, it is only necessary to store

spectral envelope data at a spacing of n in time. Thus, if it were the case that any spec-

tral envelope satisfied Sj (kn) = 0, Vk E [0, i - 1], then storage space could be saved by

not recording spectral envelope S. For example, in the example above, the only spectral

envelope that isn't equal to 0 at points in time that are multiples of n is S1. Thus, this

current vector could be stored (with no loss of information) by only storing S1 .

More generally, consider any current vector I that consists of full-period piecewise

combinations of the harmonics k1, . . . , k,. That is to say, over each cycle of the line voltage

(n points of data) the current vector can be written as a linear combination of the complex

exponentiasen i,...e . Then, clearly, at the points in time {knIk E [0,] _

the only non-zero spectral envelopes will be Sk1 , ... , Sk,. Therefore, in such a case,

storing the sufficient set of spectral envelopes (the set necessary to compute all spectral

envelope values) only takes 2Nb bits to store, which could be much less than that Nb

bits needed to store all raw current values if p is much smaller than n (that is to say, if

only a small portion of the possible harmonics are actually used).

This same notion can be extended to a wider class of current vectors. Consider any

current vector I that is a half-period piecewise combination of the harmonics k1, ... , k,.

That is to say, over each half-cycle of the line voltage (! points of data), I can be written

as a linear combination of the complex exponentials e kit,. , e nk t. Then, as shown

in the following lemma, there are many cases in which recording the spectral envelopes

... , Sk, only at the points {kl|k E [0, 2(N-1) 1 (plus a negligible amount of side

information) would suffice to completely determine all spectral envelope values. This

would take only 22Nb bits (plus a negligible amount to store side information), which

again could be much less than the Nb bits needed to directly store all raw current values.

Lemma 3. Let k 1,... , kp E [0, n - 1] be a collection of distinct harmonics such that the

matrix B = (bi,j) where bjj = e (k-k) is invertible. Let I =(iO, .. .,iN E RN

be any current vector that consists of half-period piecewise combinations of those har-

monics. Then, given io, ... , i11 1 and {Sk(t)Ik E {ki,. .. , k,},t E { |m E [0, 2(N)]}}

it is possibly to completely determine I uniquely.

Proof. This can be shown by induction. As the base case, note that io,. ... , i 1 are

uniquely specified. Then, for each t E {f-nTm E [0, 2(N-j)]}, if it, ... , t-i are uniquely

specified then it+a,... ,i t+n- 1 can be uniquely determined as follows.

Let m, = t i 2e 3. Each of the mi are determined, uniquely, by the

already known Values of I. Let a,..., a, E C, f(x) =Z _iaj ekix. Then ij =

f(j - t -- C {t - n, t + n - 1} for some setting of a,... , a, because I consists of

half-period piecewise combinations of the harmonics ki,.. . , kp. Then,

t+n-1

Sk,(t)= (ije~ ki

j=t

t+! -1 t+n-1

j=t t=t+
22

-_1

m, + > f (h)e- k (h2)

h=O

2 P
m 1 -1 p3>

=mi + 27"as kj h -- k h -7rikl

h=O j=1

nl

7- p

Tni + _I~kl je-2n (kj-k 1,)h

h=0 j=1

P 2

j=1 h=0

P

= mi- + (-1)kE i
j=1

where bj= h e n(k-k)h. Let A = [ai, . . . , ap] be the 1 x P column vector of the ass,

let B = (b1,j) be the p x p matrix of the b1,3s, and let C = [(-1)k1Sk, -m, . . ., (-1k)Sk, P-

mp]T be a 1 x P column vector. Then, the above becomes BA = C which has the unique

solution A = B- 1C exactly when B is invertible. Since B is invertible by assumption,

this immediately implies that Zt+ ... , t+n-1 are uniquely determined. Inducting on t

completes the proof. E

The applicability of this lemma depends on the invertibility of this matrix B.

A necessary and sufficient condition for the invertibility of B is shown in the following

lemma.

Lemma 4. Let k1,..., k, E [0, n - 1] be a collection of distinct harmonics, and let

B = (bij) be the p x p matrix with entries given by bIj = E k e (k-ki)h. Then B is

invertible if and only if p < n.

Proof. Let yo,.. , yn-1 be n element vectors where the hth element of vector yj is given

by

yj[h] = en.

Thus, the yj are simply the DFT basis functions. Let x1 , . .. , x, denote n element vectors

which are given by the p elements of the set {yj} that correspond to elements in {kj}.

That is to say zy = yk,. Let N, ... , ; be n element vectors that are defined by

[fxi[h] h<
Tj-[h]2

0 otherwise

Similarly, let

[h] = y [h] h <

0 otherwise

Recall that the Gram matrix of a set of n element vectors {vi, ... , vp} is the p x p

matrix given by G = (gi,j) where

9i,j = (vi, v).

Furthermore, recall that G is invertible if and only if the vectors {vi,.. . , v,} are linearly

independent. Clearly, B is the Gram matrix of {T,... , T}. Thus, B is invertible if and

only if {,. .. ,} T is a linearly independent set.

Next, notice that yo,... , yn-1 is an orthogonal basis of the space C". Moreover,

Yo,..., y,-1 are the projection of yo,.. , y,-1 onto the space ((C e & 02) C . Clearly,

Y, . .y. , y,-1 span the E dimensional space ((C e D O"). Thus, any subset of 1 elements2 2

of the set {W,... , yn_1} must be a basis of ((C e 01), which immediately implies that

any subset of {, . . . , y_1}of size at most is linearly independent, and of size at least

is not linearly independent.

By construction, {I, ... , p} c { ,... , y-1}. Therefore, {I, ... , T} is linearly

independent if and only if p < '.

Based on observations of a variety of loads, [1], it appears that many real electrical

loads consist (approximately) of half-period piecewise combinations of a small number of

harmonics. Thus, it is reasonable to expect that the above assumptions might actually

be valid in practice. Figure 3, below, shows the raw current drawn by a variety of loads

which have this property.

This section concludes by considering an algorithm P which takes as input L and

any sufficient set of spectral envelope values {Sj(t)}. That is to say, the set of spectral

envelope values is sufficient to uniquely determine the characteristic current vector Ij for

any load 1j E L. P makes its prediction by the applying the same maximum likelihood

rule used by algorithms A and E. That is to say, it makes the prediction

I = argmaxljELPr[l = i{S(t)}}.

Curr-ent

S0 2

04

b 6ho

0 0.05 0.1 0.15 0.2 0.25
Time(S)

(a) Incandescent Light Bulb.

8 Ourrent
S4

2
0

-2

be
4

- 6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time(S)

(b) Motor.

Current

4
2

0

4
b6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time(S)

(c) Computer Power Supply.

Figure 4.3: Turn-on Transients. This figure illustrates turn on transients for a variety

of electrical loads. These three plots show a turn on transient for an incandescent light

bulb, a motor, and a computer power supply, respectively.

The following lemma shows that such an algorithm will perform exactly as well as the

algorithm E, discussed earlier, whose input includes all spectral envelope values.

Lemma 5. For algorithms P and E, as defined above, let ip and 7E denote the predictions

made by algorithms P and E, respectively. Then, Pr[lp = 1] = Pr[lE = 1] always.

Proof. The proof of them lemma is analogous to the proof of Lemma 1. Notice that,

by construction, both E and P are optimal algorithms in the sense that they make the

most likely prediction given their input. Moreover, notice that the input to P could be

constructed from the input to E (because it is a subset of that input) and, furthermore,

that the input to E could be constructed from the input to P (because the input to

P is sufficient to uniquely determine I and therefore to uniquely determine all spectral

envelopes).

Thus, by the logic of the proof of Lemma 1, if E (resp. P) performed better than

P (resp. E) in any case, this would contradict the optimality of P (resp. E) because it

would allow some other algorithm C to be formed which, on the same input as P (resp.

E) would predict more accurately than E (resp. P) by using P (resp. E) as a subroutine.

This contradiction immediately implies that Pr[lp = 1) = Pr[lE = 1 always. []

4.4 EM Algorithm

The previous section discussed the theoretical applicability of using spectral enve-

lope data for the purpose of classification. As was shown, a maximum-likelihood classifier

using a sufficient set of spectral data is exactly as accurate at a maximum-likelihood clas-

sifier operating on the raw current data. This section will consider a practical way to

perform classification using the EM algorithm [8].

The fundamental goal of the EM algorithm is to be able to take a large collection of

data, where each piece of data is a set of spectral envelope data for a single turn-on event,

and split that data into a collection of clusters, where, ideally, each cluster will contain

all of the turn-on events for a single load. To be precise, the EM algorithm produces a

maximum likelihood estimation of a set of unknown parameters given incomplete data.

In this setting, the incomplete data is the collection of spectral envelope data obtained

from many turn-on events. This data is incomplete because the identity of the load

represented in each turn-on event is initially unknown (it is the goal of this classification

algorithm to determine this identity). In the following, the "label" of a piece of (spectral

envelope) data will refer to the identity of the load that produced that data. Data which

has a label will be referred to as "labeled" and data without a label will be referred

to as "unlabeled". The parameters that are being estimated by the algorithm are the

parameters that determine the clusters.

For the sake of clarity, before providing a detailed description of the operation of

the EM algorithm, a simple example will be considered. In this example, each cluster

will be given by a multidimensional Gaussian in spectral envelope space. That is to say,

if p significant spectral envelopes are recorded, at each of h different points in time, then

the space of interest will be isomorphic to 0 Cph and each cluster will be given by a ph

dimensional complex Gaussian. Thus, each cluster is represented by a probability density

function where the value of this function at any point in (spectral envelope) space signifies

the density of probability that the device represented by that cluster would produce the

spectral envelope data represented by that point. Each Gaussian cluster will be assumed

to be spherically symmetric; that is to say, its covariance matrix is given by a'ph, where

'ph is the ph x ph identity matrix and o2 is a variance. Furthermore, in this example,

all clusters will be assumed to have the same covariance matrix. Thus, the unknown

parameters that specify the M clusters (one cluster for each of the M electrical loads)

are the means of each cluster pi, . . . , MM and the single common variance oa. It should be

noted that these parameters really do suffice to completely specify the clusters because a

Gaussian is determined by its mean and covariance matrix. In addition to the unknown

parameters that specify the clusters, the apriori probability distribution of load selection

is also unknown. As discussed in Section 1, p(l) is the probability that load lj is the load

in the "black-box." This distribution is determined by M - 1 parameters (there are M

loads, and the sum of the probabilities over all loads must be 1). The EM algorithm will

attempt to estimate the 2M unknown parameters (M +1 that specify the clusters, M - 1

that specify the apriori distribution) from the data by finding the maximum likelihood

setting of these parameters.

Before proceeding further, it is worth noting that, while many specific assumptions

were made in the above example about the structure of the clusters, these assumptions

are actually quite realistic, in certain settings. For example, consider raw current mea-

surements that are corrupted with additive white Gaussian noise (AWGN). It can easily

be shown that every spectral envelope will also be corrupted by Gaussian noise, and,

moreover, that the variance of the noise in each spectral envelope will be equal (because

the noise is white). Thus, in the AWGN case, the assumption that the clusters will

be spherically symmetric Gaussians with identical covariance matrices would be exactly

correct.

To describe the EM algorithm precisely, a bit of notation needs to be introduced.

Let 0 be a vector which specifies the parameters of the clusters (in the above example,

0 consists of the means and common variance of the clusters as well as the probability

distribution that each cluster). Let x be the vector of unlabeled data, which consists

of spectral envelope values at each turn-on event. To be precise, if the data set includes

data from r turn-on events, then x is an r element vector where the jth element of this

vector is the collection of spectral envelope data during the jth turn-on event. Thus, each

element of x isn't a single number, but rather an entire collection of data. The vector x

is a single sample value from the random vector X. Let Z denote the random vector of

labels (each element is the identity of the load that produced a particular collection of

spectral envelopes, stored in part of x, when turned on) and z denote a particular setting

of labels (z is a particular sample value from Z). Let L(9, x, z) denote the likelihood

function, which specifies the likelihood that clusters with parameters 0 would correspond

to data x and z.

The algorithm operates is a series of phases, where each phase produces a new

(and hopefully better) estimate of 0; let O(M denote the estimate of 0 produces in round

t. Each phase consists of two steps: the expectation step (E-step) and the maximization

step (M-step).

In the E-step, the expected value of the log of likelihood function is calculated

(where expectation is performed with respect to the conditional distribution of Z given

0 and x). This expected value, in step t, is denoted by Q(|6(0)) and is given by

Q(010(t)) - Ezjx,ow ln L(0, x, Z). (4.3)

In the M-step, a new estimate of parameters, 0 (t+1), is produced by selecting the

parameter 0 which maximizes the quantity calculated in the E-step. Thus,

0 (t+) - argmaxoQ(0|0(t)). (4.4)

To apply the EM algorithm to classifying loads on the basis of spectral envelope

data, the assumptions of the above example will be made, with the exception of the fact

that no assumptions will be made about the covariance matrices of each Gaussian cluster.

That is to say, different clusters may have different covariance matrices and each cluster

may or may not be spherically symmetric. Thus, 0 is the 3M element parameter vector

given by

06 =(Pi,...,p) ME1, ... ,7EMIp1,---, IPM)

where i,... , pM are the means of the M clusters, E1, . . . , E M are the covariance ma-

trices of each cluster, and p1,... ,PM are the apriori probabilities that loads 11,... ,M,

respectively, are turned on. These apriori probabilities have the constraint EZ 1 P= 1.

The likelihood function, L(O, x, z), is given by

R

L (0, x , z) = fj pz, fz, (zi), (4.5)
i=1

where fj (x) denotes the probability density function of the jth cluster, xi denotes the ith

piece of data, and R denotes the number of pieces of data. This cluster is a multivariate

Gaussian with mean ptj and covariance E. Recall that the probability density function

f (x) of a multivariate Gaussian with mean y and covariance matrix E is given by

f3 (x) = 1 (X4(4.6)
(27r)N det(Z)

Therefore, by substituting (4.6) into (4.5), and rearranging, the likelihood function is

given by
R

L(O, x, z) =] pzi e(2izi)T E(oi92z)
j=1 N(27r)Ndet(Ez,)

R ln(Pz;

N(2)N det(Ez;) e-*(xi-pzi)TE-1(Xi-pz4)

i=1

R N 1 1
exp((ln(p,) - - ln(27r) - - ln(det(E,))) - - -(Xi - pt).2 2 2 Z (4.7)

The likelihood function is expressed in exponential family form for convenience in later

calculation.

The goal of the E-step is to calculate Q(0|0()) - Ezix,o(t) In L(O, x, Z). To do this,

we must first calculate P(Zj = 1j|Xx = xi). By Bayes' Theorem and the definition of

conditional probability, this is given by

P(Zj = g|Xi = xi) PP(XXi = xi|Z =)P(Zi = 1)
P(Xi -xj)

P(X = xi|Zi = l3)P(Zi = ij)
=P(Xi= xi|Zi =)P(Zi =i)

fi (xj)p3

: k 1 fk(xi)pk
(4.8)

Using this equation for P(Z = lj|Xj = xi), and (4.3), we can immediately write

a closed form equation for the calculation performed in the E-step.

Q(0|0 ()) = Ezio,o(t) In L(O, x, Z)

R

EzlxOm ln(exp(Z(ln(pz)
i=1

N 11
- 2ln(27) - 1ln(det(Ez2))) - (Xi

2 2 2

M R 1

= P(Z = ly = =xi) (ln(pz)-- ln(27r)-- ln(det(Ez,)))-_(zi-pz) (Xi--p2i
j=1 i=1 2 2

(ln(pz,) - - ln(27) - 1ln(det(Ez,)) - -(x zi
fk=1 kpk(2 *

(4.9)

In the M-step, we choose a set of parameters 0 M to maximize the quantity

- p2)TYE-l (xi - p2)

M

j=1 i=1R

Q(010()) determined in the E-step. Notice that Q(010(1)) has a particularly simple

form. None of the parameters pi,. .. ,M share a term with any of the other param-

eters pi, ... ,IyM, 1, -- , EM. Thus, the values of pi,... ,pM that maximize Q(0|0(t)) can

be determined independently of p 1 ,... , M, E, -.. ,EM. Let (plt),...,p]) denote the

vector composed of the probabilities pi,. . . , pm produced in the preceding M-step. Then

(t) W siae nth urn r
pi ,...,Pm), the estimates produced in the current M step, are given by

(pW,... ,pt) = argmax(p,...,PM))i ln(Pt+1)).
1= =1 fk(Xi)

Notice that this has exactly the same form as the maximum-likelihood estimator for the

binomial distribution. Thus,

(t+1) 1 xi)pW

Similarly, the pairs of parameters (pi, E 1),... , (pu, Em) also appear in separate

terms from one another and from the parameters pi, ... , pm. Therefore, the values of

the parameters (pj, Ej) that maximize Q(6 |6(t)) can be determined independently of all

other parameters. Thus,

(p+ +)=argmax,j,, (l'P n (det (Ej))- (- p) (Xi -p11)).
R~= f2xz 2

Notice that this has exactly the same form as the maximum-likelihood estimator for a

Gaussian distribution. Thus

R fj (xi)pg x

(ty1) __ i7-i k-(Xi)P7; (4.10)k R fj (xi)pj
i=k(=1 fk(Xi)Pk

and

t1) R=1 fk(Xi)Pk .11)
R fj (xi)Pj

i= 1 f k(ii) P k

Chapter 5

An FPGA-based Spectral Envelope

Preprocessor

5.1 Background

Power electronics and power electronic controls are proliferating in consumer elec-

tronics. There is an increasing expectation that advanced power conditioning electronics

will play a role in managing and coordinating power consumption not simply for a par-

ticular load, e.g., a variable speed drive in an air conditioning plant, but also in response

to the dynamic needs and capability of the utility system. Loads that can respond not

only to their own tasking but also to the needs of the utility are implicit in many visions

of a "smart grid."

There is a need for flexible, inexpensive metering technologies that can be deployed

in many different monitoring scenarios. Individual loads may be expected to compute

information about their power consumption. They may also be expected to communicate

information about their power consumption through wired or wireless means. Switch gear

like circuit breaker panels may eventually be expected to provided detailed submetering

information for different loads on different breakers or clusters of breakers and controls.

New utility meters will need to communicate bidirectionally, and may need to compute

parameters of power flow not commonly assessed by most current meters.

Appropriate sensing hardware and information delivery systems remain a chief

bottleneck for many applications. Both vendors and consumers will likely find innumer-

able ways to mine information if made available in a useful form. However, metering

hardware and access to metered information will likely limit the implementation of new

electric energy conservation strategies in the near future. The U.S. Department of Energy

has identified "sensing and measurement" as one of the "five fundamental technologies"

essential for driving the creation of a "Smart Grid" [13]. Consumers will need "sim-

ple, accessible..., rich, useful information" to help manage their electrical consumption

without interference in their lives [13].

Digital technology has been in use for over 20 years for measuring and meter-

ing power flow. A few examples from an enormous array of metering and measurement

approaches for monitoring power can be found in [14], [15], and the references in these

documents. Digital power monitoring has also made its way to the "plug" and "power

strip" level, e.g., see [17]. Many different schemes for storing or communicating informa-

tion are still under exploration - see [16] and its references for example. Most of these

solutions deploy computation hardware that is either substantially complicated in both

hardware and firmware, e.g., [14] where a DSP and a micro-controller work together to

coordinate computation of real, reactive, and apparent power, or where fully integrated

custom chips are specifically developed for a particular application.

The "spectral envelope" representation of observed current and voltage signals

used in the non-intrusive load monitor or NILM [1] can be a very flexible basis for

computing and tracking all sorts of useful metrics about power consumption. Spectral

envelopes estimate real and reactive power consumption and harmonic contents. Also,

even for waveforms with substantial high frequency content, the frequency content of

the spectral envelopes can be made relatively band-limited. Spectral envelopes are often

a natural way to "compress" useful data about load current and power consumption,

easing communication requirements.

This chapter describes an integer-arithmetic implementation of a spectral enve-

lope preprocessor for an inexpensive FPGA. The spectral envelope FPGA coordinates

data acquisition and computes spectral envelopes without the need for floating point

computation. Hence, the FPGA can be used in a two-IC suite (with an analog-to-digital

converter), to inexpensively acquire load consumption data. This data minimizes the

need for "downstream" computation later in the signal processing workflow. Of course,

further computation can be used to track, trend, price, or control energy consumption.

The FPGA can directly control communication as well, providing wired or wireless ac-

cess, or storage on flash memory or other media. The spectral envelope FPGA is a

cost-effective building block that can be used to enable a huge array of power monitoring

and control applications, ranging from the individual load up through the breaker panel

or utility service entry level and beyond. It can be used to provide necessary power

consumption information for coordinating power electronic controls.

This chapter describes the design of this key building block and shows results

from a prototype. The next section describes the approach for using spectral envelopes

for load identification and how this data is computed by the preprocessor. The following

section presents the FPGA-based spectral envelope preprocessor and the techniques used

to implement the preprocessor cost-effectively. Finally, the performance of prototype

hardware is examined and further enhancements for expanded monitoring applications

are described.

5.2 Utility of Spectral Envelopes

Typical turn-on current transients are shown in Fig. 5.1 for an incandescent lamp,

a universal motor (as in a vacuum cleaner or hand tool), and a personal computer.

Dynamic changes in the power and harmonic consumption of a load, e.g., during turn-on

or turn-off transients, can serve as a fingerprint for identifying load operation [1]. For

example, an observed turn-on transient or exemplar from a training observation produced

by one of a collection of loads can be used to identify the load in an aggregate current

measurement. An analogous procedure can be performed using turn-off transients. All

that is needed, in principle, to determine the operating schedule of a collection of loads

is to record the aggregate current drawn by those loads and then match each observed

transient to the turn-on or turn-off fingerprint of a particular load in the collection.

Direct examination of current waveforms may not be practical for many stages

of some applications, including many components in energy scorekeeping, monitoring, or

conservation systems. Direct operations on the current waveform require sample rates

adequate to capture the highest harmonic content of interest [1]. In some metering,

monitoring, and control applications it is more practical to either store data for a period

of time and examine it later, or transmit data to another location for interpretation and

control. In either of these cases, it is convenient to have a useful representation of the

data that avoids excessive storage or communication bandwidth requirements.

Spectral envelopes provide a useful separation between data collection and anal-

ysis. They permit a small, inexpensive system with low processing power to collect data

0

beO
bo

0 20 40 60 80 100 120
Time (s)

(a) Incandescent Light Bulb.

Current -

60
be

0 20 40 60 80 100 120
Time (s)

(b) Motor.

Current

0

be
beO

0 20 40 60 80 100 120
Time (s)

(c) Computer Power Supply.

Figure 5.1: Turn-on transients for an incandescent light bulb, a motor, and a computer
power supply, respectively.

continuously. A system with larger available processing power, potentially physically re-

mote from the data collection front end, can either review a storage device at a later time

or continuously process a relatively low bandwidth information stream over a convenient

communication channel, wired or wireless.

The spectral envelopes of current are defined at each line-locked period of the

service voltage. If i[n] represents the samples of current, and there are N samples taken

per cycle, then the spectral envelopes of current are given by a0 [m], ... , aN-1 [m] and

b0 [n],.... bN-1 [m], where m indexes the period. These spectral envelopes are defined as

N-1 2wk
aj [m] =(i[mnN + k] -sin(N)(5.1)

k=0

and similarly,
N-1

27rk
bj[m] =(i[mN + k] -cos(N (5.2)

k=0

Spectral envelopes can be expressed in terms of the Discrete Fourier Transform

(DFT) [2]. The DFT transforms a sequence of N complex numbers, x[O],..., x[N - 1],

to another sequence of N complex numbers X[0], . . . , X[N - 1] by

N-i

X[k] = x[n]e- kn

n=0

where here j, rather than i is used to represent V-I, to avoid confusion with current.

The inverse of this transformation, the IDFT, is given by

N-1
2j

x[n] = NZ X[k]e N.

k=0

Thus, the spectral envelope values are simply given by the real and imaginary parts of

the DFT of current.

Given the DFT coefficients over one period of the service voltage, it is possible to

exactly reconstruct or preserve all of the information in the raw current samples over that

period. Of course, simply recording all of the DFT coefficients will not reduce the data

handling requirements - if there are N samples of current, the DFT will transform these

N samples to N DFT coefficients. While it may appear that storing the DFT coefficients

would take twice as much space as storing the raw current samples, because they are

complex numbers, it should be noted that the DFT will be symmetric (because the raw

current samples are real), so only a of the N complex numbers need to be stored; thus,

the storage requirement for storing all meaningful DFT coefficients is the same as storing

all raw current samples (when both are stored to the same level of precision). However,

as observed in [10], in situations where the significant or relevant current drawn by an

electrical load consists predominantly of the fundamental frequency (the frequency of

the service voltage, for example, 60 Hz) and a small collection of the line frequency

harmonics (such as the 2nd) 3 rd, 5th), it is reasonable to record, for each period of the

service voltage, only a few DFT coefficients. These relatively few DFT coefficients can be

used to reconstruct the original current samples with a relatively small error. Also, the

time varying values of the DFT coefficients themselves can be used directly as fingerprint

signatures for the loads, or to track important quantities associated with load operation

with reasonable accuracy.

Because only a few DFT coefficients may be needed to accurately represent the

current waveforms, this "spectral" approach to the representation of the waveforms serves

as a form of compression. As a concrete example, consider current and voltage samples

that are collected at a 7.68 KHz sample rate. The sampling rate must be sufficiently

high in order to provide adequate anti-aliasing without filtering effects and to provide

adequate detection of voltage zero crossings to enable line-locked data collection. This

corresponds to 128 samples per 60 Hz line-cycle (N = 128), and so 64 meaningful complex

DFT coefficients need to be stored to perfectly reconstruct arbitrary current samples.

However, for many applications, including load monitoring for diagnostics, only a limited

number of DFT coefficients need be stored. In the prototype system discussed here,

just 4 coefficients, or 6.25% of the full set of already compact harmonically-related DFT

coefficients, were needed.

Of course, other reductions of the data could be applied, e.g., simply recording

average aggregate real power once per second (where the average is taken over each second

interval), leads to further compression. Such data would not reflect the detailed short

term variations that would occur in real power, nor would it reflect any of the behavior

of the higher harmonics. Time-varying DFT coefficients or spectral envelopes strike a

balance between the need to store or transmit as little data as possible and the need to

maintain sufficiently detailed data to be able to accurately perform load monitoring of

interest.

Spectral envelopes can be directly interpreted as other meaningful physical quan-

tities under some conditions. In situations as illustrated in Fig. 5.2 where the utility

voltage is relatively harmonic free and "stiff" (with constant peak amplitude), the real

part of the fundamental frequency spectral envelope or DFT coefficient of the current

waveform scales to "real power" in steady-state. The imaginary part scales to reactive

power. If the voltage is not stiff or harmonically pure, then it is still possible to accurately

estimate real and reactive power by also storing the same set of DFT coefficients of the

voltage (i.e., if the 1 st, 3rd, 5 th, and 7 th DFT coefficients of current are stored, then these

same four coefficients of voltage should also be stored) By definition, time averaged real

power (over one line-cycle) is given by

N-1

P = N i[n]v[n],
n=o

where i[n] and v[n] are the samples of current and voltage, respectively, over one period.

Let Ik and Vk denote the (complex) amplitudes of the kth harmonics of current and

voltage, respectively. Using the Plancherel Theorem, real power can be expressed in

terms of the DFT of current and voltage,

N-1

P = Z IkV*.
k=O

Reactive power can be calculated in an analogous fashion. Thus, if it is indeed true that

only a small number of DFT coefficients of current are not approximately zero, then

an accurate approximation of real and reactive power could be obtained by storing only

the few significant DFT coefficients of current, and the same set of DFT coefficients of

voltage.

Figure 5.2, shown below, shows the line voltage, aggregate current, and prepro-

cessor output, during the turn on of a device that draws exclusively real power. The

only non-zero preprocessor envelope is the envelope that corresponds to real power. It is

important to note that, because the only non-zero DFT coefficient of current is the 1st

coefficient (fundamental), this envelope is truly a scaled version of real power, regardless

of the harmonic content of the voltage waveform. This is due to the fact that, by the

above logic, the only harmonics of the voltage waveform that affect real and reactive

power are those harmonics that are also present in current. For simplicity, this example,

as well as all other example transients in the remainder of this section, consist of simu-

lated data. However, it should be noted that, even though the analysis in this section is

200 vonage --
00

a) 100

0

-100

q-200

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

(a) Line Voltage.

4 Current -

-2

0

-4
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

(b) Aggregate Current.

200

9 150

100

50
50

D 0

_~500
0 0.1 0.2 0.3 0 .4 0.5 0.6

Time (s)

(c) Preprocessor Output.

Figure 5.2: Sample Preprocessor Output. The top two plots depict the measured line
voltage and aggregate current, respectively, while a simulated device is being turned on.
The third plot depicts the preprocessor output.

illustrated with simulated examples, the analysis applies equally well to real data.

Interesting examples arise from loads that draw non-sinusoidal or harmonically

distorted current waveforms, like some personal computers or compact fluorescent lamps.

Figure 5.3 depicts the current drawn from a simulated load over one period of the line

voltage. This device consumes first and third harmonic current. Calculated preprocessor

output for this simulated device is shown in Figure 5.4.

1.5
Current-

1

0.5

0

-0.5
bo

-1

0 2 4 6 8 10 12 14 16 18
Time (ms)

Figure 5.3: View of current over one period of the line voltage. This simulated device
draws current predominantly at the first and third harmonic.

200

100
bfl
Cd

0

a-100

-200

0.2 0.3 0.4 0.5 0.6
Time (s)

(a) Line Voltage.

3.1 0.2 0.3 0.4 C
Time (s)

(b) Aggregate Current.

200 a,

-g150
100

50

0 0-0

10 a3

3 10
0-20

-30
0 0.1 0.2 0.3 0.4 0.5 0.6

Time (s)

(c) Preprocessor Output.

Figure 5.4: Sample Preprocessor Output. The first two plots show the measured line volt-
age and aggregate current, respectively. The third pair shows the preprocessor outputs
a1 and a3 corresponding to in-phase current draw at the first and third harmonics.

87

Figure 5.5: Spectral Envelope Preprocessor Block Diagram. An Analog-to-Digital con-
verter is used to produce samples of the line voltage and the aggregate current, which
are then used by the FPGA to produce spectral envelope coefficients. These coefficients
can be stored in a compact flash card and also transmitted via 802.11 WiFi on demand.

5.3 FPGA-Based Spectral Envelope Preprocessor

To calculate, store, and communicate a relevant subset of DFT coefficients for

power monitoring and energy scorekeeping, a prototype FPGA (Field Programmable

Gate Array) was constructed to implement a spectral envelope preprocessor. All Verilog

code can be found in Appendix C. This system makes use of a low-cost FPGA (Altera

Cyclone I, EP1C3T100C8). The spectral preprocessor consists of four subsystems: a

subsystem that obtains current and voltage samples, a subsystem that computes spectral

envelope coefficients, a subsystem that stores computed spectral envelope coefficients, and

a subsystem that can transmit the spectral envelope coefficients to another computation

or display platform for further analysis. Each of these subsystems will be considered in

detail. Figure 5.5 shows the overall block diagram of the system.

Data flows through the system as follows. The transducer interface circuitry mea-

sures the line voltage and aggregate current, producing the signals v(t) and i(t). These

signals are sampled and quantized by an analog-to-digital converter (ADC) that pro-

duces the samples v[n] and i[n]. The FPGA processes these samples to compute spectral

envelopes. The spectral envelope coefficients can be stored in a Compact Flash (CF)

Figure 5.6: FPGA Block Diagram. The preprocessor is used to calculate spectral envelope
coefficients. The ADC controller is used to control the sampling scheme of the Analog-
to-Digital converter. The CF controller interfaces with a Compact Flash card to enable
spectral envelopes to be stored and later recalled. The WiFi controller interfaces with
an 802.11 WiFi transceiver to transmit spectral envelope data.

card for later use. The system also includes an 802.11b/g WiFi transceiver that allows

any collection of the spectral envelope coefficients to be transmitted to another compu-

tation device for analysis. The FPGA provides control logic for each of the subsystems.

Figure 5.6 shows a block diagram of the system implemented in the FPGA.

5.3.1 Current and Voltage Measurement

Current and voltage measurements from at least one voltage channel and at least

one current channel are used to compute spectral envelopes. The system is easily ex-

panded to measure more than two channels, supporting three-phase electrical services,

for example. The prototype system uses an LA-55 current transducer to measure aggre-

gate current and a simple transformer to measure the line voltage. A transformer with

dual secondary coils was used in the prototype. This provides one coil for measurement

purposes, and a second coil for powering the preprocessor. The two coil arrangement pro-

vides a voltage sense with very little phase distortion, ensuring accurate calculation of in

phase and quadrature spectral components. Figure 5.7 illustrates this utility connection.

i-Jlju

Figure 5.7: The FPGA system receives both line voltage measurement and low-voltage
supply through a transformer with dual secondary coils.

5.3.2 ADC Controller

In many signal processing applications, a computationally efficient algorithm like

the Fast Fourier Transform (FFT) computes the complete spectral analysis of a sampled

waveform. However, in situations like power monitoring, where a relatively small number

of spectral coefficients may contain all or most needed information, needed spectral coef-

ficients can be computed more efficiently by a traditional DFT implementation, i.e., by

mixing observed waveform samples directly with the stored samples of basis sinusoids. In

this approach, basis sinusoids are stored in a memory and multiplied by observed samples

of a waveform. If there are N samples stored in memory for each basis sinusoid, then

it is necessary to acquire N samples of the current and voltage waveforms for each line

voltage period.

The FPGA coordinates the operation of the ADC (Analog to Digital Converter)

to obtain the samples i[n] and v[n] of the current and voltage waveforms i(t) and v(t). To

provide a known number of waveform samples per line period, the FPGA "locks" to the

line voltage waveform. That is, the FPGA varies the sample rate to track with variations

in the line voltage frequency. The sampling clock is derived from the output of a digital

phase-locked loop (PLL) on the FPGA that tracks the line voltage frequency.

The phase of the sampling is set such that the first voltage and first current

samples are taken at the negative to positive zero crossing of the line voltage. The goal is

0 0.2 0.4 0.6 0.8 1
Time (cycles)

Figure 5.8: Sampling. This figure depicts the sampling scheme used to obtain samples
of the line voltage and aggregate current. Samples are taken at points in time that
correspond to the samples stored in the basis sinusoid memory. For clarity, this figure
only depicts 8 sample points per cycle, while the prototype system actually uses 128
sample points per cycle.

to multiply each entry in the basis sinusoid by the value of the waveform to be analyzed

at the corresponding point in time. It is essential that the entire process is line locked to

the line frequency in order for the estimated spectral envelope coefficients of current to

correspond to "in-phase" and "quadrature" components of current with respect to the

fundamental of the voltage waveform. This sampling scheme is illustrated in Figure 5.8.

The sample times and values are indicated by diamonds.

5.3.3 Envelope Preprocessor

Many interesting hardware and software systems that can calculate spectral en-

velope or quantities related to spectral envelopes have previously been constructed. Ref-

erences [14] - [16] and their associated references describe various metering schemes that

compute real, reactive, and apparent power, and also harmonic distortion in one form

or another in many cases. In [1], multiple phase-locked loops, analog multipliers and

integrators were used to estimate spectral envelope coefficients. In [10], a design using

multiplying digital-to-analog converters, low-pass filters, and a single phase-locked loop

was presented. In [11], a expensive digital signal processing board was used to perform

the calculations. In [12], the processing power of a personal computer was used for

Figure 5.9: Signal Flow Graph. This diagram depicts the signal path for the calculation
of a spectral envelope. Raw current values are multiplied by the appropriate elements
of each basis sinusoid, and the results are accumulated over each period to produce each
spectral envelope value.

spectral envelope coefficient estimation.

All of these systems can provide accurate estimates of spectral envelope coefficients

or related quantities. They serve as essential building blocks of various types of metering

systems. They are often expensive and dedicated. The FPGA-based system discussed

in this section is an inexpensive single-chip solution that can estimate spectral envelope

coefficients for stand-alone use or as part of a turn-key building block in more complex

systems. The FPGA computes spectral envelopes using integer arithmetic on stored basis

waveforms and observed waveform samples.

The FPGA-based spectral envelope preprocessor calculates the spectral envelopes

of current, a1[m], bi[m), . . ., where m indexes the periods of the line voltage. Figure 5.9

shows the computation performed to produce estimates of a single spectral envelope

coefficient, a3 [m]. The system multiples i[n], the samples of current, with ba,j [n], the

samples of a basis sinusoid, and sums the result over a single period of the line voltage.

If N denotes the number of samples per period, then

N-1

a. [m] = Z i[mN + k] -a,[mN + k] (5.3)
k=O

and similarly,
N-1

b [m] = i[mN + k] -, [mN + k] (5.4)
k=0

Each spectral envelope coefficient has a different basis sinusoid associated with it; for

example, calculation of a3 [m] involves multiplying i[n] by fSa,3[n], where Va,3[n] consists

of discrete time samples of a sinusoid at three times the line frequency, with its phase

locked to the line voltage. Figure 5.10, shown below, depicts examples of basis sinusoids.

For illustration purposes, these sinusoids are sampled at only 3 bits, while the prototype

system makes use of 10 bit samples.

Figure 5.11 shows a block diagram of the FPGA-based spectral envelope prepro-

cessor. The preprocessor takes the discrete time samples of i(t) and v(t) as input, denoted

i[n] and v[n] respectively, where n indexes the samples, and produces estimates of the

spectral envelope coefficients aj and bj of the current i[n].

The voltage samples v[n] are used as input to a phase-locked loop (PLL), which

synchronizes the entire computation to the line voltage. As noted earlier, the computa-

tion process is synchronized to the line voltage so that the calculated spectral envelope

coefficients correspond to some extent to meaningful physical quantities (real power, re-

active power, etc.). The output of the PLL is sent to a block of steering logic on the

FPGA that produces the address for the basis sinusoid memory, as well as a clear signal

for the accumulators. The basis sinusoid memory consists of the samples of the various

basis sinusoids. The address produced by the steering logic specifies a single sample

time of a single basis sinusoid. The sample of the basis sinusoid that is retrieved from

the basis sinusoid memory is then multiplied by the current sample i[n]. The result of

this multiplication is then passed through a demultiplexer which sends the result to the

appropriate accumulator by using the address produced by steering logic to determine

which spectral envelope coefficient is currently being calculated.

There is one accumulator for each estimated spectral envelope coefficient. The

accumulators are all cleared at the end of each period of the line voltage through the

0

Cd

Sample Value-

20 40 60 80 100 120
Index in Memory

(a) Basis sinusoid to compute ai

Sample Value

20 40 60 80 100 120
Index in Memory

(b) Basis sinusoid to compute b1

1 20 40 60 80 100 1:
Index in Memory

(c) Basis sinusoid to compute a3

Figure 5.10: Basis Sinusoids. This figure depicts three examples of basis sinusoids, used
to calculate real spectral envelopes of in-phase fundamental frequency content, quadra-
ture fundamental frequency contents, and in-phase third harmonic content, from top to
bottom, respectively. The basis sinusoids shown here are sampled at 3 bits for illustration
- the actual prototype spectral envelope preprocessor uses 10 bit samples.

Clear

ai b1 as b3 ...

Figure 5.11: Preprocessor Block Diagram.

use of the clear signal produced by the steering logic. For every sample i[n], the address

produced by the steering logic will select each of the basis sinusoids in turn, so that every

sample of current is multiplied by the appropriate sample of each of the basis sinusoids.

This FPGA-based implementation provides a great deal of flexibility. For example,

the subset of spectral envelope coefficients that are being estimated can be changed by

altering the entries in the memory to correspond to a different set of basis sinusoids.

This implementation is also efficient in terms of FPGA resource utilization. It uses only

a single PLL and a single multiplier, as opposed to previous hardware implementations

that often used multiple PLLs and/or multipliers [1],[10]. This system can function with

only a single multiplier because the FPGA is capable of multiplying each sample i[n]

by the corresponding sample of each of the basis sinusoids and forwarding each result

to the appropriate accumulator, before the next sample i[n + 1] arrives. The multiplier

consumes substantial logic elements on the FPGA. It consumes 24% of all resources used

by the envelope preprocessor and 13% of all resources used by the complete system. By

using only one multiplier, the design is capable of fitting in a small, low-cost FPGA.

There are several ways to configure and deploy the spectral envelope preprocessor

for any given application. For situations where the voltage waveform is relatively sinu-

soidal and "stiff," the spectral envelopes of current can be interpreted as scaled physical

quantities in steady state. As discussed above, under these assumptions, the ai envelope

of current in steady state corresponds to a scaled estimate of real power or "P". The b1

envelope of current corresponds to reactive power or "Q". In situations where the voltage

is not stiff and/or not sinusoidal, the FPGA could be tasked to also compute the spectral

envelopes of voltage as well as current. This more complete set of spectral envelopes

could be stored or transmitted to a computation platform or metering instrument that

can quickly compute estimates of real or reactive power or other quantities of interest.

Alternatively, the FPGA can be reconfigured to compute quantities like real and reactive

power. In practice, it has been found that the basic computation of the spectral envelopes

of current, assuming a stiff voltage source, to yield information that is directly useful for

energy scorekeeping and demand-side load control and diagnostics, e.g., see [1].

5.3.4 CF Controller

The purpose of this FPGA subsystem is to store spectral envelope data on an

erasable memory like a CF (Compact Flash) storage card. This subsystem is capable of

storing spectral envelope data as it is produced, as well as retrieving the spectral envelope

data from any point in time, on demand. To interface with the CF card, the "True IDE"

interface mode is used. This interface mode is universally supported by compact flash

storage cards and it allows the system to be easily adapted to interface with other mass

storage devices that use the IDE interface standard, such as an IDE hard drive. While it

would be possible to impose a filesystem on the CF card (i.e. FAT32), the current design

treats the CF card as a single large, raw block of storage, for simplicity. Due to the

low data rate of the spectral envelope coefficients (for the prototype preprocessor with 8

spectral envelopes, each stored at 24 bits of resolution, the data rate is 2.8 KB/s), even a

moderately sized CF card could store the spectral envelope data for a substantial length

of time. For example, in for the prototype system, a 1 GB CF card would suffice to store

data for approximately 4.3 days.

5.3.5 WiFi Controller

This subsystem facilitates the transmission of spectral envelope coefficients to a

PC or other computation platform for further analysis or display. It makes use of an

802.11b/g WiFi transceiver and TCP/IP. The current design is capable of supporting

both ad-hoc and access point (infrastructure) networks.

The transmitted data is retrieved from the CF card as needed. The WiFi subsys-

tem can operate in two different modes. In the first mode, the system streams spectral

envelope coefficients as they are generated. In the prototype, this corresponds to a data

rate of 2.8 KB/s. In the event of a momentary interruption in the connection to the PC,

the system will automatically buffer data from the last successfully transmitted packet

and resume transmission from that point when a connection is reestablished. The system

will then send data at the highest available transmit speed (54 Mb/s for 802.11g), until

the system catches up to the freshly produced spectral envelope data. In the second

mode, an application on the PC requests data by specifying a range of time; the sys-

tem then transmits all data from the desired range of time, at the maximum possible

transmission speed.

5.4 Flexibility

The design presented above is just one example of an FPGA-based load monitoring

interface. The modularity of the design, and the versatility of FPGAs, makes it simple to

change the transmission system, for example, to wired ethernet (IEEE 802.3) or Bluetooth

(IEEE 802.15.1) or ZigBee, or to change the storage system to, for example, a microSD

card. An FPGA permits the interconnection of a wide variety of different subsystems to

form a complex utility monitoring system. Even a small, low-cost FPGA is capable of

implementing both the spectral envelope preprocessor as well as the required interface

logic to control the various subsystems. Thus, an FPGA can serve as the backbone of

an inexpensive, complete utility or load monitoring system.

5.5 Prototype Results

The FPGA-based system discussed above calculates, stores, and transmits spec-

tral envelope data. Figure 5.12, shown below, shows a picture of the prototype hardware.

To make use of this data, a monitoring or control system typically includes a

subsystem to receive and use the spectral envelope data. For example, a homeowner could

use a personal computer to collect spectral envelope data from the FPGA preprocessor

installed near or in a circuit breaker panel. The prototype includes a PC-based software

application that can interface with the FPGA-based preprocessor via wired or wireless

communication channels, retrieve spectral envelopes, and display spectral envelope data.

Using this spectral envelope data, the PC-side application can disaggregate the operating

Figure 5.12: Prototype hardware. This is a picture of the prototype FPGA-based system.

schedule of individual loads from measurements made on an aggregate power feed serving

multiple loads. The application is self-training and identifies loads in essentially real-time.

Screenshots of this program are shown in Figure 5.13 and Figure 5.14.

This software communicates via TCP/IP with the FPGA-based preprocessor. The

software can retrieve any subset of recorded data, as well as issue commands, such as

changing the sampling resolution of the ADC. Once spectral envelope data is retrieved,

this software makes use of the Expectation-Maximization (EM) algorithm [8] to classify

or recognize the operation of individual loads.

This software is only one example of the many possible ways to use spectral

envelope data. Other software applications that make use of spectral envelope data could

be developed (a system that uses this data to control a set of generators in a micro-grid

is currently in development). Data could be retrieved by a web application that displays

a live stream of data on a webpage. Other embedded systems could communicate with

the FPGA-based system and use the retrieved spectral envelope data to control electrical

loads.

Figure 5.13: Screenshot. This figure shows a screenshot of the prototype non-intrusive
monitoring software in operation. There are two plots in the figure that display spectral
envelope data. The upper plot displays real power and the lower plot displays third
harmonic content. The spectral envelope data corresponds to the light bulb and motor
whose raw current values are shown in Figure 5.1. The lower left section of the screenshot
shows the output of the classifier, which has correctly identified both of the loads.

1504

141 105.3 063 7 7-(o) 17 00 1.3 114

Sp~1Thlsp~P5
Figure 5.14: Screenshot. This figure shows a screenshot of the prototype non-intrusive
monitoring software in operation. As in Figure 5.13, the upper plot displays real power
and the lower plot displays third harmonic content. The data corresponds to the same
light bulb and motor as Figure 5.13, with the difference being that now the motor is
turned on while the light bulb is on. As shown in the lower left corner of the screen, the
system still classifies both devices correctly.

100

..........
.

5.6 Applications

The FPGA preprocessor can provide a turn-key component for creating all sorts

of utility monitoring, energy score-keeping, and diagnostic applications for all sorts of

systems. The preprocessor is relatively simple compared to microprocessor or DSP-

based data acquisition systems. The concepts and hardware illustrated here could be

incorporated into individual loads, circuit breakers, or circuit breaker panels to provide

energy consumption information for both monitoring and control.

The simplification in data storage and transmission bandwidth requirements af-

forded by the FPGA can be extended to other domains and monitoring problems. For

example, it is possible to extend the non-intrusive monitoring concept beyond the realm

of electrical distribution. A single acoustic sensor could be used to monitor the flow of

water, for example, in a main water service to a set of rooms in a building. Finger-

print acoustic signatures can be developed that permit recognition of hydraulic loads or

events in the water distribution system. This acoustic data is not "line locked" to any

particular "utility frequency." However, much like a voice signal, acoustic data can be

described by simplifying expressions, e.g., the coefficients of a time series, also known as

linear predictor coefficients (LPCs) [18]. The FPGA could be tasked to compute these

LPCs and transmit them, again providing a significant bandwidth reduction for storage

or transmission. Other applications may also be possible.

The approach demonstrated in this chapter permits a flexible trade-off between

the hardware installed proximal to a monitored device or collection of devices and the

transmission bandwidth to and remote computation capability at a distal monitoring

or information gathering system. An FPGA like the one described here could serve

as a central coordinator for gathering, processing, and transmitting all sorts of utility

101

information, including simultaneous monitoring of electrical, water, and gas services.

This type of monitoring can support home or building level energy conservation and

diagnostics efforts. It might also be useful for coordinating the operation of generation

and the scheduling of demand on micro-grid power distribution systems or similar power

distribution systems on transportation systems.

102

Chapter 6

Conclusion

The techniques illustrated in this thesis can be applied to a wide range of signal

processing problems, including non-intrusive load monitoring. The FPGA-based spec-

tral envelope preprocessor, discussed in Chapter 5, provides an inexpensive, accurate,

and convenient platform for collected a variety of useful data about a collection of elec-

trical loads. This information can be used for a variety of power monitoring and energy

scorekeeping tasks, as well as to diagnose problems with individual electrical loads. The

algorithms presented in Chapters 2-4 can be applied to enhance the capabilities of a

NILM system.

Chapter 4 presented an algorithm that could identity a single electrical load from

a collection of electrical loads, by examining a subset of the spectral envelopes of the

current drawn by the unknown load. This allows the data collected by the FPGA-based

system of Chapter 5 to be used to non-intrusively monitor a collection of electrical loads

and determine when each load is turned on and off, as well as how much power each load

consumed at any point in time.

103

Chapter 3 considered the problem of using knowledge of one subset of spectral

envelope values to estimate another subset of spectral envelope values, for an appropri-

ately constrained class of waveforms. A simple but numerically unstable algorithm to

solve this problem was first presented, followed by a refined approach that avoided nu-

merical instability to exploiting properties of cyclotomic fields. In a NILM environment,

many simultaneously operating loads may draw currents that have partially overlapping

harmonic content. The algorithm presented in this section would allow the estimation of

all spectral envelopes of each individual load by using the band of harmonic content that

is unique to that load to estimate the overlapping portions of harmonic content.

Chapter 2 examined the problem of calculating the DFT of a quantized signal.

An algorithm was presented that used the structure of the mapping between regions of

frequency space and quantized current to accurately, and efficiently, estimate the true

spectral envelope values of a measured current. This algorithm is invaluable when dealing

with data produced by the FPGA-based NILM of chapter 5 as it allows accurate estimates

of true power consumption to be made from the quantized data collected by that system.

The algorithms of Chapters 2-4 can be applied to a variety of discrete-time signal

processing tasks that involve the computation of the DFT of a signal. The algorithm

of chapter 2 can be applied to any situation in which one desires accurate computation

of the DFT of a signal, but is only provided with a coarsely quantized version of that

signal. The algorithms in chapter 3 can be applied to a variety of estimation problems

where the constraints can be written with coefficients in a cyclotomic field. Finally, the

classification algorithms presented in chapter 4 could be applied in other classification

contexts when the objects being classified have distinct harmonic signatures.

104

Appendix A

Matlab Code for DFT Accuracy

Improvement

This appendix consists of Matlab code that implements the algorithm discussed in

Chapter 2. There are 3 functions: findFirstVertex which finds a single vertex of a region

R, findNeighbors which finds all neighbors of vertex x of region R and findAllVertices

which finds all vertices of region R.

function [x)=findFirstVertex(y,A,B)

e rr =10^(-4);

[numConst , numHarms] s i z e (A);

S=zer os (0 ,numHarms);

D-zeros (0,1);

C-zeros (0 ,1);

s=rand(1 , numHarms) -. 5;

for i=1:numHarms

105

dists-zeros (1 ,numConst);

for j=1:numConst

if (isempty(f ind (C=-j ,1)))

init-sum(A(j ,).*x);

adj=sum(A(j ,:) .* s) ;

dists (j)=(B(j)-init)/adj;

if (dists (j)<=-err)

dists (j)=inf

end

else

dists (j)=inf

end

end

[dummy, newConstraint]=min(dists);

x=x+dists (newConstraint)*s;

i f (i <numHarms)

C-vert cat (C, newConstraint)

Svertcat (S,A(newConstraint ,:))

D-vert cat (D, [B(newConstraint) 1);

[currRows , dummy]= s iz e (S) ;

s=(vert c at (S, rand (numHarms-currRows ,numHarms))\

vertcat (D, zeros (numHarms-currRows , 1))) '-x;

end

end

106

function [L]=findNeighbors (y ,A,B)

e rr =10^ (-6) ;

[numCons , numHarms]= s i z e (A);

L-zeros (0 ,numHarms);

sat Cons=L;

unsatCons=L;

satD=zeros (0 ,1) ;

unsatD=zeros (0 ,1)

isUpper=zeros(0,1)

for i=1:numCons

if (abs (sum(A(i ,:) .*y)-B(i))<err)

satCons=vertcat (satCons ,A(i ,:));

satD=vertcat (satD ,B(i)) ;

isUpper=vertcat (isUpper , (i<=numCons/2))

else

unsatCons=vert cat (unsatCons

unsatD-vert cat (unsatD ,B(i))

,A(i ,:));

end

end

dists=zeros (1, length (unsatD))

for i =1:length (satD)

if(isinf(satD(i))==0)

for j=i +I1:length(satD)

if(isinf(satD(j))=-=0&& ((sum(abs(satCons(i,:)-

satCons(j ,:)))<err && abs(satD(i)-satD(j))<err

107

) | (sum(abs(satCons(i ,:)+satCons(j ,:)))<err

&& abs(satD(i))+satD(j))<err)))

satD(j)=inf;

end

end

end

end

goodRows=find (1- is in f (satD))

satCons=satCons (goodRows,:)

satD=satD (goodRows);

isUpper-isUpper (goodRows);

for i=-1:length(satD)

tempCons=sat Cons;

tempCons (i , :)rand (1 ,numHarms);

tempD-satD;

tempD (i)=-0;

dir=(tempCons\tempD)'-y;

i f ((sum(dir .*satCons (i ,:)))*(2* isUpper(i)-1)>0)

dir=-dir;

end

for j=1:length(unsatD)

initosum(unsatCons(j ,:) .*y);

adj=sum(unsatCons (j ,:) .* dir);

dists (j)=(unsatD(j)-init)/adj

if (dists (j)<err)

108

dists (j)=inf;

end

end

[newDist , newConstraintI=min(dists)

candL=y+newDist*dir;

candBad=O;

sL=size (L)

for j=1:sL(1)

i f (sum(abs (L (j

candBad=1;

end

end

i f (candBad==O)

,:)-candL))<err)

L--vertc at (Ly+dists (newConstraint)*dir) ;

end

end

109

[V]=findAllVertices (y,AB)

e rr =10^(-6) ;

[numCons, numHarms]= s i z e (A);

V=zeros (0 ,numHarms) ;

H=[findFirstVertex (y,A,B)];

sHzsize (H) ;

while (sH (1) >0)

V=vertcat (V,H);

L-zeros (0 ,numHarms);

for i=1:sH(1)

newL-findNeighbors (H(i

sNL-size (newL)

sV=size (V) ;

for j=1:sNL(1)

if (sV (1)==0

,:) ,A,B) ;

|| min(sum(abs(V-repmat(newL(j ,:) ,sV

(1) ,1)) ,2))>err)

L-vertcat (L,newL(j ,:))

sL-size (L)

end

end

end

H=L;

sH-size (H)

end

110

function

Appendix B

GP/PARI Code for cross estimation

The code in this appendix was developed in collaboration with Warit Wichakool.

This appendix consists of GP/PARI code that implements the algorithms discussed in

chapter 3. There are 5 functions: nfrref.gp computes the RREF of a matrix with entries

that are elements of a number field, ntt.gp computes the number theoretic transform,

fntt.gp computes a "fast" number theoretic transform, mul.gp multiplies polynomials

using the NTT and div.gp divides polynomials using the NTT.

n f r r e f (A, OptionRowEchelonForm)=

{
lo c al (numRows, numCols, colIndex , rowIndex , rowCounter , found ,M, temp,

pivotVal , k, lNeigh);

numRowslength (A[, 1);

numCols=length (A);

colIndex=1;

111

rowCounter=1;

while ((colIndex<=numCols) && (rowCounter<=numRows)

rowIndex=rowCounter;

found =0;

while (rowndex<=numRows && !found,

if (M[rowIndex , colIndex]==0,rowIndex++;,found=1;);

if (found ,

if (rowCounter!=rowlndex,

tempM[rowIndex ,];

M[rowlndex ,]=M[rowCounter ,];

M[rowCounter ,]=temp;

pivotValVl[rowCounter , colIndex];

M[rowCounter ,] = M[rowCounter ,] / pivotVal;

f or (k=1,numRows,

if ((OptionRowEchelonForm &&

rowCounter != 1) || k > rowCounter)) | (
OptionRowEchelonForm && k!=rowCounter) ,

112

((k = 1 &&

1Neigh4\I[k, colIndex];

M[k,]=M[k,] -M[rowCounter ,] * 1Neigh;

rowCounter++;

collndex++;

return (M)

}

113

ntt (nI pI z , v)=

{

loc al (index ,k ,vmod, zmod, vout) ;

vout vector (n);

vmod Mod(v,p);

zmod Mod(z,p);

for(index = 1,length(vout),

for (k = 0, n-1,

if (v[k+1],vout [indexl] += vmod[k+1]*zmod^ lif t (Mod

((index -1)*k,(p-1))) ;) ;

return(lift (vout))

}

114

fntt (n,p,z ,v, split)=

I

m, mhat, bx, row, col , zi , z2, modzl, modz2,

k2 , k , modz , vout , vtemp, THRESHOLD);

THRESHOLD = 32;

if (split [n] = 0 || n < THRESHOLD,

return (ntt (n, p, z ,v))

ni split [n][1];

n2 = split [n][2];

modz=Mod (z , p) ;

modz1 = Mod(z

modz2 = Mod(z

^(n2) ,p)

^(n1) ,p)

zi lift (modzl);

z2 lift (modz2);

m= matrix (n2 ,nl , row, col ,v [(row-1)*nl+(col -1)+i])

mhat matrix (nl, n2);

for (k = 1,n1,

mhat [k ,] = lift (Mod(fntt (n2,p, z2,m[,k] , split) ,p)

115

local (nI, n2, k1,

vout vector (n);

vtemp = matrix (n1, n2);

for(k1 0, ni-1,

for (k2 = 0, n2-1,

mhat[k1+1,k2+1] =lift (mhat[kl1+,k2+1]*

modz^ (k1*k2)) ;

for (k2 - 0, n2-1,

vtemp [, k2+1]=

+1], split) ,

); /* end for(k2 = 0,

for (kl = 0 .

lift (Mod(fntt (n1 ,p,zl ,mhat[,k2

p))~;

..) */

n1-1,

for (k2 = 0,

vout[n2*k1 + k2 + 1] = vtemp[k1+1,k2+1];

return (vout) ;

116

n2-1,

117

mul (a, b, polyTemp , n, ninv , p , z , zinv , sp)=

local (acoeff , bcoeff , ahat, bhat ,chat ,index);

acoeff = Vec(lift (a));

bcoeff = Vec(lift (b));

ahat = fntt (n,p,z ,concat (vector (n-length(acoeff)) , acoeff) ,sp) ;

bhat fntt(n,p,zconcat(vector(n-length(bcoeff)),bcoeff) ,sp);

chat vector(n);

for (index=1,n, chat [index]= lift (Mod(ahat [index]* bhat [index] , p)))

d = fntt (n,p,zinv ,chat ,sp);

c = lift (Mod(ninv*d,p));

c = vecextract (c ,"1.. -2");

c = li f t (Mod(Vec(li f t (Mod(Pol(c) , polyTemp))) ,p))

c = apply(x->if (x > (p- 1)/ 2 , x-p,x) ,c);

return (Mod(Pol(c) ,polyTemp))

}

118

div (a , b , polyTemp , n, ninv

local (acoeff , bcoeff ,ahat ,bhat ,chat ,index, c, d);

acoeff = Vec(lift (a));

bcoeff = Vec(lift (b));

ahat = fntt (n, p, z , concat (vector (n-length (acoeff)),acoeff) ,sp);

bhat = fntt (n,p, z , concat (vector (n-length (bcoeff)) bcoeff) ,sp);

chat = vector(n);

for (index=1 ,n, chat [index]= li f t (Mod(ahat [index]/ bhat [index], p)))

d = fntt(n,p,zinv ,chat ,sp);

c = lift (Mod(ninv*d,p))

c = concat (c , [0]) ;

c = lift (Mod(Vec(li ft (Mod(Pol(c) ,polyTemp))) ,p))

c = apply(x->if (x > (p-l)/2, x-p,x) ,c);

return (Mod(Pol(c) ,polyTemp))

}

119

7p7z 7 zinv 7sp)=

Appendix C

Verilog Code for FPGA-Based

Spectral Envelope Preprocessor

This chapter includes all Verilog code used to implement the FPGA-Based Spec-

tral Envelope Preprocessor discussed in Chapter 5.

//Top level module of PowerMon

//Version 1.6

//
//Author: Zack Remscrim

120

module PowerMon(

//clock

OSC.25,

//led

OLED,

//compact flash

CFCSO, CFCS1, CFA, CFD CF _ORCFIOW ,CFREG,CFRESET,

CFNTRQ,

//ADC

ADCDB, ADCCS, ADCRD, ADCWR, ADCINTRQ, ADCCLK,

//Ethernet

ETHERYRXD, ETHERTXD, ETHER-RESET

//clock

input OSC_25; //25 MHz clock

//led

output OLED; //output led , active high

/compact flash

output CFCSO;

output CFCS1;

output [2:0] CF-k;

inout [15:0] CF.D;

//compact

//compact

//compact

flash CSO,

flash CS1,

active low

active low

flash address

//compact flash databus

121

output CFO-R;

output CF-IO.W;

output CFREG;

output CFRESET;

input CFANTRQ;

//compact f

//compact f

//not used

7/reset

7/interrupt

ash read,

ash write

always tie

active low

active low

to VCC

request

//ADC

inout [7:0] ADCDB;

output ADCCS;

output ADCJ{D;

output ADCWR;

input ADCINTRQ;

output ADCCLK;

//Ethernet

input ETHERXD;

output ETHERTXD;

output ETHERJESET;

//ADC databus

//ADC chip select , active low

//ADC read , active low

//ADC write, active low

//ADC interrupt request , active low

//ADC clock

/serial input line

//serial output line

//ethernet reset ,

from ethernet module

to ethernet module

active low

//Begin global wires and regs

wire OLED;

wire adcEnable; /enables adc, active high

wire cfEnable; /enable cf controller , active high

wire sysClk ; //system clock

wire [7:0] microData;

122

wire microWrite;

wire debug;

//End global

//Begin

wires and regs

module instantiations

//resetGen module and connections

wire globalReset ;

resetGen

//adc

aResetGen (sysClk , globalReset) ;

buffer

wire [15:0] adcBufferDataln , adeBufferDataOut ;

wire adcBufferWr , adcBufferRd , adcBufferInClk , adcBufferOutClk

adeBufferEmpty , adcBufferFull ;

adcBuffer aAdcBuffer (adcBufferDataln , adcBufferWr , adcBufferRd

adcBufferInClk , adcBufferOutClk , adcBufferDataOut

adcBufferEmpty , adcBufferFull) ;

//ade

wire [7:0]

controller

ADCDB;

wir e ADCCS, ADC-ID, ADC..WR, ADCINTRQ, ADC.CLK;

adcController aAdcController (OSC-25, globalReset , adcEnable ,

ADCDB, ADCCS, ADCiRD, ADC-WR, ADCJNTRQ, ADCCLK,

adcBufferDataln , adcBufferWr , adcBufferInClk) ;

123

//ethernet buffer

wire [7:0] etherBufferIn , etherBufferOut;

wire etherBufferWr , etherBufferRd , etherBufferFull

etherBuffer Empty;

wire [9:0]

etherFifo

etherUsedWords;

aEtherFifo (etherBufferIn , etherBufferWr , etherBufferRd

, sysClk , etherBufferOut , etherBufferFull , etherBufferEmpty

etherUsedWords) ;

//ethernet controller

wire etherSendRaw;

ether Controller aEtherController (~ sysClk , globalReset ,ETHERRXD

,ETHERTXD,ETHERIRESET, etherBufferRd , etherBufferOut

etherBufferEmpty , etherUsedWords , etherSendRaw , debug);

//compact flash read buffer

wire [15:0] cfBufferDataIn , cfBufferDataOut ;

wire [7:0] cfBufferAddrIn , cfBufferAddrOut

wire cfBufferWr;

// cfBuffer aCfBuffer (cfBufferDataIn , cfBufferWr , cfBufferAddrIn ,

cfBufferAddrOut , sysClk , cfBufferDataOut) ;

//compact flash write buffer

wire [15:0] cfWriteBufferDataln , cfWriteBufferDataOut ;

124

wire [7:0] cfWriteBufferAddrIn , cfWriteBufferAddrOut;

wire cfWriteBufferWr ;

cfBuffer bCfBuffer (cfWriteBufferDataln , cfWriteBufferWr ,

cfWriteBufferAddrIn , cfWriteBufferAddrOut , sysClk

cfWriteBufferDataOut);

//compact flash controller

wire CFCSO CF CS1 CFI.R ,CFIOWCFREGCF-RESETCFINTRQ,

cfBusy , cfLoadWrite , cfIsReadMode , tempDebug;

wire [2:0]

wire [15:0]

CFA;

CFD;

wire [3:2] cfDebug;

wire [7:0] cfLoadDataln;

cf Controller aCfController (~sysClk , globalReset , cfEnable

microWrite , microData , CFCSO , CFCS1, CFA, CF-D, CFIOR

CF.IOW ,CFREG,CFRESET,CFINTRQ, cfDebug , cfBufferDataln,

cfBufferAddrIn , cfBufferWr , cfBusy , cfIsReadMode ,

cfWriteBufferAddrOut , cfWriteBufferDataOut , tempDebug)

//prep

wire [7:0] prepV, prepl;

wire prepNewSample , prepNewEnvelope , prepDebug;

wire [127:0] prepEnvelopes ;

prep aPrep (~ sysClk , globalReset , prepV , prepI , prepNewSample,

etherSendRaw , prepEnvelopes , prepNewEnvelope , prepDebug) ;

125

//main controller

mainController aMainController (sysClk , globalReset ,

adcBufferDataOut , adcBufferRd , adcBufferEmpty , adcBufferFull

cfBufferAddrOut , cfBufferDataOut , cfWriteBufferDataln ,

cfWriteBufferWr , cfWriteBufferAddrIn , microData , microWrite ,

cfIsReadMode , cfBusy , efEnable , etherfBufferIn , etherBufferWr ,

etherBufferFull , prepV , prepl , prepNewSample , prepEnvelopes

prepNewEnvelope , adcEnable) ;

//End module instantiations

//Begin global assignments

// assign adcEnable=~globalReset ;

assign OIED-debug;

assign sysClk=OSC_25;

assign adcBufferOutClk=~sysClk;

// assign ETHER{ESET= 1'b 1;

//End global assignments

endmodule

module is responsible for managing the global reset

signal

126

//this

for the first 64k clock

cycles

module resetGen (clk , reset Out)

input clk ; //system clk

output resetOut;

parameter

reg [15:0]

//global reset , active high

numCycles=64000;

cycleCount;

wire reset Out ;

assign resetOut=(cycleCount<numCycles)

always @(posedge clk) begin

cycleCount <=(cycleCount <numCycles) ? cycleCount+1'bl

cycleCount;

end

endmodule.

module is responsible for overall system control

takes data from adc

cfController

fifo , moves it to cf buffer , and

to write to cf card

module mainController (clk , reset , adcBufferDataOut , adcBufferRd

adcBufferEmpty , adcBufferFull , cfReadBufferAddrOut ,

cfReadBufferDataOut , cfWriteBufferDataln , cfWriteBufferWr

cfWriteBufferAddrIn , microData , microWrite , cfIsReadMode , cfBusy

127

//this

// it IIses

that reset is asserted//it assures

cfEnable , etherBufferDataln , etherBufferWr , etherBufferFull

prepV , prepI , prepNewSample , prepEnvelopes , prepNewEnvelope ,

adcEnable) ;

input elk ;

input reset;

input [15:0]

//system

//global

adeBufferDataOut ;

clk , 25MHz

reset ;

/output data from ade buffer

input adcBufferEmpty;

input adcBufferFull;

//high

//high

when ade buffer is empty

when ade buffer is full

input [15:0] cfReadBufferDataOut; //output data from cf read

buffer

input cfBusy; //high when

input etherBufferFull; //high

cf card is busy

when ethernet buffer is

full

input [127:0] prepEnvelopes; //prep envelopes

input prepNewEnvelope;

set of prep envelopes

output adcBufferRd;

//high for one cycle when a new

is available

//read line for adc buffer ,

high

output [7:0] cfReadBufferAddrOut; //address for read buffer of

cf card

output [15:0] cfWriteBufferDataln ; //input date to cf write

buffer

output cfWriteBufferWr; //write line for cf write buffer

, active high

128

active

cfWriteBufferAddrIn;

of cf card

output [7:0] microData; //databus to other modules

output microWrite; //write line to other modules,

active low

output cfIsReadMode;

write to cf card

output cfEnable;

//1

//enable

active high

output [7:01 etherBufferDataIn;

to read from cf Card, 0 to

signal

//input

to cf controller ,

data to ethernet

buffer

output etherBufferWr ; //write line for ethernet

active high

output [7:0]

output [7:0]

/next voltage sample forprepV;

prepI; /next current sample for

prep

prep

output prepNewSample;

prep module that

output adcEnable;

//asserted

a new sample is r

//asserted t

for one cycle to inform

eady , active high

o enable adc

/output led;

//reg led;

reg adcBufferRd, cfWriteBufferWr , microWrite , cfIsReadMode ,

cfEnable , etherBufferWr , prepNewSample , adcEnable;

reg [7:0] cfWriteBufferAddrIn , microData , cfReadBufferAddrOut ,

etherBufferDataln , prepV, prepI ;

129

buffer ,

//addressoutput [7:0] for write buffer

reg [15:0] cfWriteBufferDataln ;

reg [29:0] initCount; //used for initializati

reg[2:0] adcState; //state for adc buffer

reg pendingCfWrite; //high when there is a

write to cf card

reg cfWriteDone; //high when cf write com

reg oldPrepNewEnvelope; //prepNewEnvelope de

cycle

reg[3:0] cfState; //state for cf write fsm

reg [27:0] cfLBA; //sector address of cfCai

reg[15:0] env0,env1 ,env2,env3, //prep envelopes

env4,env5,env6,env7;

reg[2:0] etherState ; //state for ether writ(

reg pendingEnv; //1 when there are envel

to be written to wifi controller

reg [2:0] envCount; //used to count envelo

reg initDone ; /used to control initializ

on

read fsm

pending

pletes

layed by one

fsm

opes waiting

pes

ation

//fsm state enum, adc

parameter adcWaiting=3'bOOO;

parameter adcRead0=3'bOO;

parameter adcReadl=3'bO1O;

parameter adcWrite0=3'bOll;

parameter adcWritel=3'blOO;

parameter adcWrite2=3'b101;

130

rd

parameter adcWrite3=3'blO;

parameter adcUpdate=3'blll;

//fsm state enum, cfWrite

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

//fsm sta

parameter

parameter

parameter

parameter

cfWrit eW aiting=4'bOOOO;

cfWriteB0a=4'bOOO1;

cfWriteB0b=4'bOO10;

cfWriteBla=4'bOOll;

cfWriteBlb=4'bO100 ;

cfWriteB2a=4'bOO;

cfWriteB2b=4'bO1O;

cfWriteB3a=4'bOlll;

cfWriteB3b=4'blOOO;

cfWriteB4a=4'blOO;

cfWriteB4b=4'b1OO;

cfWriteComDone=4'blOll;

cfWriteWaitBusy=4'b1OO;

cfWriteEnd0=4'bll0l;

cfWriteEndl=4'blllO;

te enum, ether write

etherWait =3'bOOO;

etherGet=3'bOO;

etherWrite0=3'bO1O;

etherWritel=3'bOll;

131

parameter

parameter

parameter

etherWrite2=3'b1OO;

etherWrite3=3'b101

etherDone=3'b11O;

parameter initPer=450000000; //the device doesn 't

collecting data

parameter

until initPer cycles after reset

maxEnv=3'h7;

//transfer data from adc buffer to cf buffer and ethernet

buffer

always @(posedge clk) begin

initCount <=(initCount<init Per) ? initCount+1'b1 init Count ;

adcEnable<=(initCount-initPer) ;

if ((reset==1'b1) || (initCount<initPer))

// init Count <=20'b0 ;

adcSt ate <=adcWaiting;

//pendingCfWrite <=1'bO;

adcBufferRd <=1'bO ;

//cfWriteBufferWr <=1'bO;

//cfWriteBufferAddrln <=8'bO;

prepNewSample<= 1'bO;

end

else begin

/* if (initCount<initPer)

cfWriteBuffer

begin //do initializations ,

for test

132

begin

begin

setup

cfWriteBufferAddrln <=(init Count [2:0]==3'blOO) ?

cfWriteBufferAddrln+l'bl cfWriteBufferAddrln;

cfWriteBufferDataln <={8'hfO , init Count [10:3] };

cfWriteBufferWr<=(init Count [2:0]==3'bill);

end

else begin*/

prepNewSample<=(adcSt ate adcWriteO);

adcBufferRd<=(adcState adcReadO) ;

//cfWriteBufferWr<=(adcSt ate adcWrite0)

case (adcState)

adeWaiting: adcState<=(adcBufferEmpty==1'bO &&

pendingCfWrite==1'bO) ? adcReadO : adcWaiting;

adcReadO: adcState<=adcReadl;

adcRead1: begin

{prepI , prepV}<=adcBufferDataOut;

adcState<=adcWrite0;

end

adcWrite0: adcState<=adcWritel

adcWritel : adcState<=adcWrite2;

adcWrite2: adcState<=adcWrite3;

adcWrite3: adcState<=adcUpdate;

adcUpdate: adcState<=adcWaiting;

endcase

//end

end

133

end

//transfer data from cf buffer to cf card

//byteO: low 8 bits of sector address

//bytel next higher 8 bits of sector address

//byte2: next higher 8 bits of sector address

//byte3: 4 zeros , high 4 bits of sector address

//byte4: the literal 01h

always @(posedge clk) begin

cfIsReadMode<=1'bO ;. //temporary, for now always write

//led <=(cfState cfWriteWaitBusy)

if (reset) begin

cfWriteDone<=1'b1;

cfLBA<=28'hOOOO1O1;

cfEnable <=1'bO;

microWrite<=1'bl;

cfSt ate <=cfWriteWaiting

end

else begin

cfEnable<=~(cfState-cfWriteEndl)

case (cfState)

cfWriteWaiting: begin //wait for pending write to be

asserted and cfBusy to clear

cfState <=(pendingCfWrite==1'b1 && cfBusy==1'bO

) ? cfWriteBOa : cfWriteWaiting;

134

microWrite <=1'b1;

end

cfWriteB0a: begin //write bO

cfWriteDone <=1'b0;

cfState<=cfWriteB0b;

microData<=cfLBA [7: 0];

microWrite <=1'bO;

end

cfWriteB0b: begin //write bO

cfWriteDone <=1'b0;

cfState<=cfWriteBla;

microData<-cfLBA [7: 01;

microWrite <=1'b1;

end

cfWriteBla: begin //write b1

ef State <=cfWriteBlb

cfWriteDone <=z1'b0;

microData<-cfLBA [15:8];

microWrite <=1'b0;

end

cfWriteBlb: begin //write b1

cfWriteDone <=1'b0;

cfState<=cfWriteB2a;

microData<-cfLBA [1 5: 8];

microWrite <=1'b1;

135

end

cfWriteB2a: begin //write b2

cfState<=cfWriteB2b;

cfWriteDone <=1'bO;

microData<-cfLBA [23:16];

microWrite <=1'bO;

end

cfWriteB2b: begin //write b2

cfWriteDone <=1'bO;

cfState<=cfWriteB3a;

microData<-cfLBA [23:16];

microWrite <=1'b1;

end

cfWriteB3a: begin //write b3

cfState<=cfWriteB3b;

cfWriteDone<=1'b0;

microData <={4'hO , cfLBA [27: 24]};

microWrite <=1'bO;

end

cfWriteB3b: begin //write b3

cfWriteDone <=1'bO;

cfState<=cfWriteB4a;

microData <={4'hO , cfLBA [27: 2 4]};

microWrite <-1'bl;

end

136

cfWriteB4a: begin //write b4

cfState<=cfWriteB4b;

cfWriteDone <=1'bO;

microData<=8'hO1;

microWrite <=1'bO;

end

cfWriteB4b: begin //write b4

cfWriteDone <=1'bO;

cfState<=cfWriteComDone;

microData<=8'hOl;

microWrite <=1'bl;

end

cfWriteComDone: begin //do nothing for one cycle

cfState<=cfWriteWaitBusy;

cfWriteDone <=1'bO;

microWrite <=1'b1;

end

cfWriteWaitBusy: begin //wait for busy to clear

cfState <=(cfBusy==1'bO) ? cfWriteEndO

cfWriteWaitBusy;

cfWriteDone <=1'bO;

microWrite <=1'bl;

end

cfWriteEndO: begin //increment lba , clear cf enable

cfState<=cfWriteEnd1;

137

cfLBA<-cfLBA+1'b1;

microWrite<=1'b1;

cfWriteDone<=1'b1;

end

cfWriteEndl: begin //do nothing for one cycle

cfState<=cfWriteWaiting;

microWrite <=1'b1;

cfWriteDone <=l'bl;

end

begin

cf St at e<=cfWriteWaiting;

end

endcase

end

end

prep envelopes to wifi controller and cf controller

always @(posedge clk) begin

oldPrepNewEnvelope<=prepNewEnvelope ;

if (reset) begin

pendingEnv <=1'bO;

pendingCfWrite <=1'bO;

etherSt ate<=etherWait;

etherBufferWr <=1'bO;

cfWriteBufferAddrln <=8'bO;

138

default :

//send

cfWriteBufferWr <=1'b0;

envCount <=3'b0;

initDone<=1'b0;

end

else begin

if (initCount<initPer && initDone==1'b0) begin //do

initializations , setup cfWriteBuffer for test

cfWriteBufferAddrln<=(initCount [2:0]==3'b1i) ?

cfWriteBufferAddrln+1l'bl : cfWriteBufferAddrln;

cfWriteBufferDataln <={8'hf0 ,initCount [10:3]};

cfWriteBufferWr<=(init Count [2:0]==3'blO) ;

initDone<=(init Count [2:0]==3'bll && cfWriteBufferAddrIn

==8'hff)

end

else begin

etherBufferWr<=(etherState~etherWrite1 | etherState-

etherWrite3);

cfWriteBufferWr<=(etherState-etherWritel)

if (prepNewEnvelope==l'b1 && oldPrepNewEnvelope==1'bO &&

pendingEnv==1'bO) begin //if a new set of envelopes

just arrived , start send process

pendingEnv<=1'bl;

etherState<=etherWait

envCount <=3'bO;

end

139

else begin

case (etherState)

etherWait: begin

etherSt ate <=(pendingEnv==1'b1 &&

pendingCfWrite== 'bO)

etherWait ;

pendingC fWrite<=cfWriteDone

? etherGet

pendingCfWrite;

end

begin

{ envO ,env1 ,env2 ,env3 ,env4 , env5 ,env6 ,env7}<=

prep Envelopes ;

etherSt ate <=etherWriteO

end

etherWriteO : begin

etherSt ate <=etherWritel

case (envCount)

3'bOOO: begin

etherBufferDataIn<=envO [15:81;

cfWriteBufferDataIn<=envO;

end

3'bOO: begin

etherBufferDataIn<=envl [15:8];

cfWriteBufferDataln<=env1

end

140

? 1'bO

ether Get :

3'bOO: begin

etherBufferDataIn<=env2 [15:8];

efWriteBufferDataln<=env2;

end

3'bOll: begin

etherBufferDataln<=env3 [15:8];

cfWriteBufferDataln<=env3;

end

3'blOO: begin

etherBufferDataln<=env4 [15:8];

cf Writ e B uf f erD at an <=env4

end

3'bl0l: begin

etherBufferDataIn<=env5 [15:8];

cfWriteBufferDataIn<=env5;

end

3'blO: begin

etherBufferDataIn<=env6 [15:8];

cfWriteBufferDataIn<=env6;

end

3'blll: begin

etherBufferDataln<=env7 [15:8];

cfWriteBufferDataIn<=env7;

end

endcase

141

end

etherWritel : begin

ether St ate<=etherWrite2

end

etherWrite2: begin

etherSt ate<=etherWrite3;

cfWriteBufferAddrln<=cfWriteBufferAddrIn+1'

b1;

case (envCount)

3'bOOO: etherBufferDataln<=envO [7:0];

3'b001: etherBufferDataIn<=env1[7:0];

3'b010: etherBufferDataIn<=env2 [7:0];

3'b011: etherBufferDataln<=env3 [7:0];

3'b100: etherBufferDataln<=env4 [7:0];

3'blOl: etherBufferDataIn<=env5 [7:0];

3'b110: etherBufferDataln<=env6[7:0];

3'b1l1: .etherBufferDataln<=env7[7:0];

endcase

end

etherWrite3 : begin

envCount<=envCount+1'b1;

etherState<=(envCount-maxEnv) ? etherDone

etherWrite0

end

etherDone: begin

142

etherSt ate<=etherWait ;

pendingCfWrite <=(cfWriteBuffer AddrIn==8'hOO)

pendingEnv <=1'bO;

end

endcase

end

end

end

end

always @(posedge clk) begin

cfReadBufferAddrOut<=cfReadBufferAddrOut+1'b1;

end

endmodule

143

module prep (clk , reset , v , i , newSample , sendRaw, envelopes ,

newEnvelope , led) ;

input elk ;

input reset-;

input [7:0] v

input [7:01 i

//system

//global

//voltage

//curent

clk , 25MHz

reset , active

sample

sample

input newSample;

of v and i arrives

//high for one cycle when a new sample

input sendRaw;

of prep data

//used to force sending raw data

output [127: 0] envelopes; //spectral envelopes produced

prep

output newEnvelope;

envelope is produced

output led;

reg led;

wire [127:0]

//high for one cycle when a new

envelopes ;

reg newEnvelope;

reg [6:0] basisAddr;

reg squareV;

phase as v

reg oldSquareV;

reg delSquareV;

//used to index basis sinusoids

//square wave with same frequency

//squareV

//squareV

and

delayed by one sample

delayed by one clock cycle

144

high

instead

reg [4:0] debounceCount; //used to debounce v

reg oldNewSample; //newSample delayed by one clock

cycle

reg [2:0] envState; //state for envelope fsm

reg signed [22:0] envAccO ,envAccl , //accumulators for envelop

envAcc2 , envAcc3 , envAcc4,

envAcc5 , envAcc6, envAcc7;

reg [2:0] envNum; //current envelope being worked on

reg[6:0] rawCount; //used to count packets for raw

transmission

reg squareVSync; //sync signal produced by cleaned

reg [23:0] numCycles; //period of squareV in cycles

reg [23:0] cycleCount; //used to produce numCycles

reg [23:0] addrCycleCount; //used to count time between

address increments

reg envFired ; //used to signify envelope

transmission

reg[127:0] iRaw; //stores raw i

//envelope creation fsm state enum

parameter wait0=3'b000;

parameter wait 1=3'b001

parameter getV=3'b010 ;

145

es

v

parameter

parameter

parameter

parameter

waitMult0=3'b011;

wait Mult 1=3'b100 ;

getProd=3'b101;

done=3'b110;

parameter numEnvelopes=4'h8; / / number of envelopes to compute

//basisRom module and

wire [63:0

basisRom

connections

basisOut ;

aBasisRom (basisAddr , ~ clk , basis Out) ;

meet setup and hold times of ROM

//prepMult module and connections

reg signed [7:0] multInO , multIn1;l //multInO is i multInI is

basis sinusoid

wire signed [15:0]

prepMult

multOut;

aPrepMult (~ clk , multInO , multIni , multOut) ;

assign envelopes=(sendRaw==1'b1) ? iRaw : {envAcc0 [19: 4]

envAccI [19:4] , envAcc2 [19:4] ,envAcc3 [19:4] , envAcc4 [19:4

envAcc5[19:4] ,envAcc6[19:4] ,envAcc7[19:4]};

//generate addr to basis sinusoid rom

always @(posedge clk) begin

delSquareV<=squareV;

146

//~clk used to

]I

if(reset) begin

oldNewSample <=1'bO;

squareV <=1'bO;

debounceCount <=5'bO;

basisAddr <=7'bO;

numCycles <=24'hO65B9A;

cycleCount <=24'bO;

end

else begin

oldNewSample<=newSample;

//produce squareV

if (newSample==1'b1 && oldNewSample==1l'bO) begin //if a new

sample was received , process it

oldSquareV<=squareV ;

//produce squareV by passing v through a hysteretic

comparator, after detecting an edge, won't

//encounter a new edge for at least 32 samples

if (squareV==1'bO && v>8'h7f && debounceCount==5'bO)

begin //rising edge

squareV<=1'b1;

debounceCount<=5'bOOOO;

end

else if (squareV==1'b1 && v<8'h80 && debounceCount==5'bO)

begin //falling edge

squareV <=1'bO;

147

debounceCount<=5'bOO001;

end

else begin //no edge

debounceCount <=(debounce Count =5'bO)

debounceCount+1'bl;

end

end

//produce basisAddr using squareV

if (squareV==1'b1 && delSquareV==1'bO)

a rising edge in squareV ,

begin //

reset basisAddr ,

if there is

assures sync

basisAddr <=7'bO;

end

else begin

//basisAddr<=(newSample==1'b1 && oldNewSample==1'bO)

basisAddr+1'b1 basisAddr;

basisAddr <=(addr CycleCount==((numCycles>4'h7) -1'bi))

basisAddr+I1'b1 basisAddr;

end

//produce sync pulse

squareVSync<=(squareV!=delSquareV) ;

//produce cycle counts

148

? 5'bO

cycleCount <=(squareV==1'b1 && delSquareV==1'bO) ? 24' bO

cycleCount+1'bl;

numCycles<=(squareV==1'b1 && delSquareV==1'bO) ? ((

cycleCount+numCycles) >>1'b) : numCycles;

addr CycleCount <=((addr CycleCount ==((numCycles >>4'h7) -1 'bi)

) (squareV==1'b1 && delSquareV==1'bO)) ? 24'bO

addrCycleCount+1'bl;

end

end

//produce envelopes

always @(posedge clk) begin

led<-sendRaw;

if(reset) begin

newEnvelope<=1'bO;

envState<=done;

envNum<=3'bO;

rawCount<=7'bO;

envFired <=1'bO;

envAccO <=23'sbO;

envAcc1 <=23'sbO;

envAcc2<=23'sbO;

envAcc3<=23'sbO;

envAcc4<=23'sbO;

envAcc5<=23'sbO;

149

envAcc6<=r23'sb0;

envAcc7<=23'sb0;

end

else begin

if (newSample==1'bl && oldNewSample==1'bM) begin // if a new

sample was received , process it

multIn0<=(i>8'h7f) ? (i-8'h80) : ((~(8'h80-i))+1'bl);//

convert to signed , two's complement

envState<=wait0;

envNum<=3'b0;

rawCount<=-rawCount+1'b1;

newEnvelope <=1'b0;

end

else begin

if (sendRaw==1'b0) begin//do normal prep data

newEnvelope<-=(basisAddr==7'b0 && squareVSync==1'b1);

//if we just cycled to data for next envelope , send

current envelope

case (envSt ate)

waitO: envState<=wait1;

wait1: envState<=getV;

getV: begin

c as e (envNum)

3'bOOO: multIn1<=basisOut [63:56];

3'bOO: multIn1<=basisOut [55:48];

150

3'bOlO: multlnl<=basisOut

3'bOll: multln1<=basisOut

3'blOO: multIn1<=basisOut

3'bl0l: multIn1<=basisOut

3'bllO: multlnl<=basisOut

3'b111: multln1<=basisOut

endcase

envSt ate<=wait Mult0;

[47:40];

[39:32];

[31:24];

[23:16];

[15:8];

[7:0];

end

waitMultO: envState<=waitMultl;

waitMult1: envState<=getProd;

getProd: begin

c as e (envNum)

3'bOO: envAcc0<=(basisAddr==7'b0 &&

oldSquareV!=squareV)?

+multOut;

3'bOO1: envAcc1<=(basisA

oldSquareV!=squareV)?

+multOut;

3'bOlO: envAcc2<=(basisA

oldSquareV!=squareV)?

+multOut;

multOut : envAccO

ddr==7'bO

multOut

ddr==7'b0

multOut

&&

envAcc1

&&

envAcc2

3'bOll: envAcc3<=(basisAddr==7'b0 &&

oldSquareV!=squareV)? multOut envAcc3

+multOut;

151

3'b1O: envAcc4<=(basisAddr==7'bO &&

oldSquareV!=squareV)? multOut : envAcc4

+multOut;

3'bl0l: envAcc5<=(basisAddr==7'bO &&

oldSquareV!=squareV)? multOut envAcc5

+multOut;

3' b11O: envAcc6<=(basisAddr==7'bO &

oldSquareV!=squareV)? multOut envAcc6

+multOut ;

3'bi1l: envAcc7<=(basisAddr==7'bO &&

oldSquareV!=squareV)? multOut : envAcc7

+multOut;

endcase

envNum<=envNum+1 'b ;

envSt ate <=(envNum==(numEnvelopes -1)) ? done

: waitI

end

done: envState<=envState;

default : envState<=envState;

endcase

end

else begin //send raw data

newEnvelope<=(rawCount==7'h7f && envFired==1'bO);

envFired<=(rawCount==7'hO) ? 1'bO : (rawCount==7'h7f ?

1 'bi : envFired);

152

case (rawCount [6: 3])

4'hO: iRaw [127:120] <= i ;

4 'hl : iRaw [119:112] <= i ;

4 'h2: iRaw [111:104] <= i ;

4'h3: iRaw[103:96] <= i;

4'h4: iRaw [95:88] <= i;

4'h5: iRaw [87:80]<= i;

4'h6: iRaw [79:72) <= i;

4'h7: iRaw [71:64] <= i;

4'h8: iRaw [63:56] <= i;

4'h9: iRaw [55:48] <= i;

4'ha: iRaw[47:40]< = i;

4'hb: iRaw [39:32] <= i;

4 'he : iRaw [31:24] < = i;

4 'hd : iRaw [23:16] < = i;

4'he: iRaw [15:8] <=i;

4'hf : iRaw[7:0] <=i;

endcase

end

end

end

end

endmodule

153

//this module controls the ADC

//when enabled , it samples both input channels at 7.68KHz,

sequential sampling

/and stores the result in the buffer

module adcController (clk , reset , enable , adcdb , adccs , adcr

adcwr , adcintrq , adc-clk , bufferData , bufferWrite , buffer'

input clk ; //system clk , 25NIHz

input reset ; //global reset , active high

input enable; /asserted to enable this module

input adcdintrq; //interrupt request from adc , act

d ,

Clk)

ive l

inout [7:0] adcdb

output adc-cs; /

output adcrd; /7

output adc.wr; /7

output adcclk; //

output bufferClk; /
adc-clk

output [15:0] bufferData;

buffer

output bufferWrite

high

//databus to adc

chip

read

write

clock

clock

select for adc, active low

for adc, active low

for adc, active low

for adc , has 1/16 freq of clk

for fifo buffer , inverted

//data to be written in fifo

//write signal for fifo buffer , active

wire [7:0] adcdb;

154

ow

wire adccs , adcclk , bufferClk

reg bufferWrite , adcrd , ade wr;

reg [15:0] bufferData;

reg [7:0] dataReg;

reg adcDatabusWrite;

with dataReg

reg [3:0]

reg [2:0]

reg chan;

reg [11: 0]

/config

outClkCount;

state ;

//data to be written to adcdb

/asserted

//used to

//state

to drive the adc databus

produce output clock to adc

for fsm

//stores next channel

sampleClkCount;

params, used to

/used

to be read from

to generate sample clk

select between adc channels and setup

sampling mode

parameter chan0Config=8'b10100100;

unsigned , single ended , chan 0

parameter chanlConfig=8'b10100101;

unsigned ,

//fsm

//left justified

//left justified

single ended, chan 1

state enum

parameter

parameter

parameter

parameter

setupConfig=3'bOOO;

writeConfig=3'bOO;

waitForInt =3'b010;

firstRead=3'bOll;

parameter pauseRead=3'b100;

155

10-bit ,

10-bit ,

parameter secondRead=3'b1O;

parameter nop=3'b11O;

//number of clk cycles between samples

parameter numCycles=1628;

assign adc-db=adcDatabusWrite ? dataReg 8'hZZ;

assign adc.clk=outClkCount [3];

assign adccs=~enable ;

assign bufferClk=~clk ; //inverted to meet setup and hold times

of buffer

//interact with ade

always @(posedge elk) begin

outClkCount<=outClkCount+1'bl;

bufferWrite<=(enable1=='b1 && state secondRead && chan==1'

bi && outClkCount==4'bOO11) ;

adcDatabusWrite<=(enable ==1'b1 && (state setupConfig

state writeConfig)) ;

adcwr <=~(enable==1'b1 && statewriteConfig);

adcrd<=~(enable==1'b1 && (state-firstRead state

secondRead));

156

if(reset) begin

chan<=1'bO ;

state <=nop;

dataReg<=8'b1011011;

sampleClkCount <=12'bO;

end

else if(enable) begin

sampleClkCount <=(sampleClkCount-numCycles) ? 12'bO

sampleClkCount+1'b1;

case (state)

setupConfig: begin //load config word to databus

dataReg<=chan ? chan1Config chanOConfig;

state <=(outClkCount==z4'b1OO && sampleClkCount

<{8'bO,5'b11111}) ? writeConfig

setup Config;

end

writeConfig: begin //write config word

state <=(outClkCount==4'b1OO)

writeConfig;

to adc

? waitForInt

end

waitForInt : begin //wait until int strobes low,

indicates conversion is finished

state <=(outClkCount==4'bO1OO) ? (adedintrq ?

waitForInt firstRead) waitForInt;

end

157

begin //read high byte

bufferData<=chan ? {adcdb , bufferData [7:0]}

{bufferData[15:8] ,adcdb};

state <=(outClkCount==4'b0100) ? pauseRead

first Read ;

end

pauseRead: begin //pause between reads

state <=(outClkCount==4'b0100) ? secondRead

pauseRead;

end

secondRead: begin //read low 2 bits , write high byte

to buffer when both channels are done

state <=-(outClkCount==4'b0100) ? setupConfig

secondRead;

chan<=(outClkCount==4'bO100) ? ~chan

end

begin

state <=(outClkCount==4'b0100) ? setupConfig

nop;

end

endcase

end

else begin

state<=nop;

dataReg<=8'bOlO1011;

158

nop:

: chan;

firstRead :

end

end

endmodule

159

//this module controls

//when issuing a load

//byteO: low 8 bits of

//bytel: next higher 8

//byte2: next higher 8

//byte3: 4 zeros , high

//byte4: number of sec

/7
//when issuing a write

form

the cf card

buffer command, data should be of the form

sector address

bits of sector address

bits of sector address

4 bits of sector address

tors to read

sector command, data should be of the

//byteO: low 8 bits of sector address

//bytel next higher 8 bits of sector address

//byte2: next higher 8 bits of sector address

//byte3: 4 zeros , high 4 bits of sector address

//byte4: the literal 01h

module cfCont roller (clk , reset , readEnable , microWrite , microData

csO , cs1 , addr , cfData , read , write , cfReg , cfReset , intrq , debug,

bufferData , bufferAddr , bufferWr , busy , isReadMode,

writeBufferAddr , writeBufferData ,led);

input clk ; //system clk

input reset ; //global reset;

input readEnable; /asserted to enable read data routine

input microWrite; //write line from micro, active low

input [7:0] microData; ///micro databus

input intrq; //interrupt request

160

input isReadMode; //1 for read mode, 0 for write mode

input [15:0] writeBufferData; //write buffer ram data bus

inout [15:0] cfData; //databus to compact flash

output

output

and

output

output

output

output

output

output

output

output

output

output

output

output

reg le

esO; //used to access task file

cs1; /used to access alternate

device control register , active low

[2:0] addr; //address

read; /read

write; //write

cfReg; //not used, should be alway

cfReset; /reset , active low

[15:0] bufferData; //buffer ram data bu

[7:0] bufferAddr ; // buffer ram address

[7:0] writeBufferAddr ; //write buffer r

bufferWr; //buffer ram write , activ

busy; /asserted when device is b

[3:2] debug;

led;

d;

active low

status register

s a logic 1

s

am address

e high

usy, active high

reg busy;

reg [3:2] debug;

161

//write delayed by 1 clock cycle

reg oldReadEnable;

wire cfReg , cfReset

wire [15:0] cfData;

reg [2:0] addr ;

//readEnable delayed by 1 clock cycle

reg [7:01

wire [7:0]

reg [15:0]

bufferAddr ;

writeBufferAddr;

cfDataReg , bufferData;

reg read , write , cs0 , cs1 , bufferWr ;

reg cfDatabusWrite; // asserted to write to cf databus,

high

reg [4:0]

reg [4:0]

reg [27:0]

reg [7:0]

reg [9:0]

reg [19:0]

reg [6:0]

cfCmd; //stores

oldCfCmd;

lba; //stores

sectorCount;

cfCount ; //
initCount ;

cfState;

current command

//stores command at previous cycle

logical block address

//stores sector count

temporary

//used

/used

to achieve

to maintain

pause powerup

state information

reg tempBusy;

reg [2:0]

//temporarily stores busy bit

packetCount; /counts data packets

reg pendingRead; /asserted when there is a pending

request

wordCount; //used to count words during

numSectorsRead; /counts number of sectors read

162

active

of FSM

reg [7:0]

cycle

read

reg [7:0]

transfer

reg oldWrite;

efReset=~reset

cfReg=1'bl;

cfData= (cfDatabusWrite==1'bl) ? cfDataReg 16'hZZZZ;

writ eBufferAddr=bufferAddr ;

parameter

initPer

parameter

parameter

parameter

initPer=50000; //the

cycles after reset

readSectorCmd=8'h20;

writeSectorCmd =8'h30

readBufferCmd=8'he4;

device remains innactive for

//read with retries

//write with retries

//read buffer

/enumeration

previously

parameter nop

parameter ini

parameter rea

parameter rea

parameter rea

parameter rea

parameter rea

assert

parameter rea

parameter rea

of commands, code 00010 currently unused , was

read alt status

=5'b00000;

tCard=5'b00001;

dStatus=5'b00011;

dTest=5'b00100 ;

dO=5'b00101; //wait

dl=5'bOO1O; //write

d2=5'bOO1; //wait

d3=5'bO1OOO

d4=5'bO1OO

/send

/send

for

to

for

busy to clear

card/head register

busy to clear and drdy to

cylinder

cylinder

high

low

163

assign

assign

assign

assign

parameter read5=5'bOOO; //send starting sector

parameter read6=5'bO1O11; //send number of sectors

parameter read7=5'bO11OO; //write command code (read sector)

parameter read8=5'bO1101; //wait for busy to clear and drq to

set

parameter read9=5'bO111O; //read a block of data

always @(posedge clk) begin

led<=busy;

oldWrite<=microWrite

oldReadEnable<=re ad Enable;

initCount <=-(initCount<initPer) ? initCount+1'b1 initCount;

if (reset)

init Count <=20'bO;

if (reset I (initCount<initPer)) begin

cfDatabusWrite <=1'bO;

csO <1'bl;

cs1 <=1'b1

read <=1'b1;

write <=1'b1

debug<=2'bO;

lba<=28'hfffffff

cfDataReg<=16'h f f f f;

cfCount <-10'bO;

cfCmd<=init Card;

164

oldCfCmd<=nop;

addr <=3'b110;

tempBusy<=1'b1;

bufferWr <=1'bO;

bufferData <=16'bO;

bufferAddr <=8'bO;

packet Count <=3'bO;

pendingRead <=1'bO;

wordCount <=8'bO;

busy <=1'b1 ;

numSectorsRead <=8'bO;

end

//process command

else begin

module is in read mode, start gathering lba data from

micro

if (readEnable)

readEnable just stepped high, reset packet

if (oldReadEnable==1'bO)

packet Count <=2'bO;

pendingRead <=1'bO;

end

write just stepped low, grab a data packet

else if ((oldWrite==1'b1) && (microWrite==1'bO))

165

// if

// if

begin

begin

count

// if

begin

case (packetCount)

3'bOOO: lba<={lba [27:8] , microData};

3'bOO: lba<={lba [27:16] , microData, lba [7:0]};

3'bO1O: lba<={lba[27:24] ,microData,lba[15:0]};

3'bO11: lba<={microData[3:0] ,lba[23:0]};

default : sectorCount <=microData;

endcase

packetCount <=(packetCount==3'b100) ? 3'b1OO

packetCount+1'bl;

pendingRead<=(packet Count==3'b100);

end

end

oldCfCmd<-cfCmd;

//when command just changed , reset state and tempBusy

if (~(cfCmd--oldCfCmd)) begin

cfState<=7'bO

tempBusy<=1'bl;

busy<=1'b1;

end

//otherwise , process current command

else begin

cfState<=cfState+1'b1

c ase (cfCmd)

166

initCard:begin //start initializing compact flash card

by

//reading status register (not alt status)

//nb: this is functionally the same as

readStatus

//however upon completion of this command,

readTest is

//called , not nop

cs0 <=1'b0;

cs1 <=1'b1;

ad dr<=3'b11 ;

read<=(cfState[6]==cfState [5]) ; //asserted for

01,10 as high bits

write <=1'bl;

cfDatabusWrite <=1'b0;

cfDataReg<=16'bO;

cfCmd<=-(cfState==7'b1111111 && debug[2]==1'bl)

? readTest cfCmd; //enters readTest at

end

debug[2]<=(cfState==7'b1011111) ? (~cfData[7]

&& cfData [6] && cfData[4]) debug[2]; //

checks that ready and dsc are set , and busy

is cleared

busye<=1'b1

end

167

begin //reads status register

status)

cs0 <=1'b0;

csl <=1'bl;

ad dr<=3'b11 ;

read<=(cfState[6]==cfState [5]);

01,10 as high

//asserted

bits

write <=1'bl ;

cfDatabusWrite <=1'b0;

cfDataReg <=16'bO;

cfCmd<=(cfState==7'b1111111)

enters nop at end

busy <en'bd

end

begin //performs

nop : cfCmd; //

a test read

lba <=28'h0000100;

cfCmd<=readO;

sectorCount <=8'h01;

busye<=1'b1

end

begin //wait for busy to clear functionally

the same as readStatus

csO <=1'b0;

cs1 <=1'bl;

ad dr<=3'b11 ;

168

for

readTest:

readO:

(not altreadStatus:

read<=(cfState [6]==cfState [5]) ; //asserted for

01,10 as high bits

write <=1'b1;

cfDatabusWrite <=1'b0;

cfDataReg <=16'b0;

cfCmd<=(cfState==7'b1111111 && tempBusy==1'bO)

? read1 : cfCmd; /enters read1 at end

tempBusy<=(cfState==7'b1011111) ? cfData[7]

tempBusy;

busy<=1'bl;

end

read1 begin //write to card/head reg

esO <=1'b0;

csl <=1'b1;

addr<=3'b110;

read <=1'b1 ;

write <=(cfState [6]==cfState [5]); //asserted

for 01,10 as high bits

cfDatabusWrite <=1'b1;

cfDataReg<={8'b0 ,4 'bllO , lba [27:24] };

cfCmd<=(cfState==7'blllllll) ? read2 : cfCmd;

//enters read2 at end

busy<=1'bl;

end

169

read2:

assert

begin //wait for busy to clear , and ready to

esO <=1'b0;

csl <=1'bl;

addr<=3'b111 ;

read<=(cfState [6]==cfState [5]) ; //asserted for

01,10 as high bits

write <=1'bl;

cfDatabusWrite <=1'b0;

cfDataReg<=16'bO;

cfCmd<=(cfSt ate =7'b1111111 && tempBusy==1'b0)

? read3 : cfCmd; //enters read3 at end

tempBusy<=(cfState==7'b1011111) ? (cfData[7]

~cfData[6]) tempBusy ;

busy<en'bd

end

begin //write cylinder high reg

cs0 <=1'b0;

csl <=1'b1

addr<=3'blOl;

read <=1'bl;

write<=-(cfState [6]==cfState [5])

for 01,10 as high bits

cfDatabusWrite <=1'b1;

cfDataReg <={8'bO, lba [23:16]};

/ / asserted

170

read3:

cfCmd<=(cfState==-7'b1111111) ? read4 cfCmd;

//enters read4 at end

busy <=1'b1;

end

read4: begin //write cylinder low reg

cs0 <=1'b0;

esi <=1'bl;

addr<=3'blOO;

read <=1'b1;

write <=(cfState [6]==cfState [5]) ; //asserted

for 01,10 as high bits

cfDatabusWrite <=1'b1;

cfDataReg <={8'bO, lba [15:8]};

cfCmd<=(cfState==7'b1111111) ? read5 cfCmd;

/enters read5 at end

busy<=1'b1;

end

read5: begin //write sector number reg

cs0 <=1'b0;

csl <=1'b1;

addr<=3'bO 11;

read <=1'bl;

write<=(cfSt ate [6]==cfState [5]); //asserted

for 01,10 as high bits

cfDatabusWrite<=1'bl;

171

cfDataReg<={8'bO, lba [7:0]1 };

efCmd<=(cfSt ate==-7'b1111111 I) ? read6

//enters read6 at end

busy<=1'bl;

end

begin //write

cs0 <=1'bO;

csl <=z1'b1;

addr<=3'b010;

read <=1'b1;

sector count

write<=(cfState [6]==cfState [5]) ;

for 01,10

// asserted

as high bits

cfDatabusWrite <=1'b1;

cfDataReg<=(isReadMode==1'b1)

sectorCount} : {15'bO,1 'b1

cfCmd<=(cfState==7'b1111111)

? {8'bO,

? read7

//enters read7 at end

busy<=1'bl;

end

begin //write

cs0 <=1'b0;

csl <=1'bl;

addr<=3'blll;

read <=1'bl;

read sector command

172

: cfCmd;

read6: reg

: cfCmd;

read7:

};

write<=-(cfState [6]==cfState [5]); //asserted

for 01,10 as high bits

cfDatabusWrite<=1'b1;

cfDataReg<=(isReadMode==1'b1) ? {8'bO,

readSectorCmd} : {8'bO, writeSectorCmd };

cfCmd<=(cfState==7'b1111111) ? read8 cfCmd;

//enters read8 at end

bufferAddr <=8'b0;

busy <=1'b1;

numSectorsRead <=8'b0;

end

read8: begin //read alt status until busy is

cleared and drq is set

//when reading , also wait for interrupt , when

doing a write , do not wait

esO <=1'bl;

esi <=1'b0;

addr <=3'b110;

read<=(cfState[6]==cfState [5]); /asserted for

01,10 as high bits

write <=1'b1;

cfDatabusWrite <=1'b0;

cfDataReg<=16'bO;

cfCmd<=((cfState==7'b1111111 && tempBusy='b0

&& (intrq==1'b1 || isReadMode==1'b0)) ?

173

read9 : cfCmd; //enters read9 at end

tempBusy<=(cfState==7'b1011111) ? (cfData[7]

~ cfData[3]) tempBusy;

wordCount <=8'b0;

busy <=1'b1

end

begin //read or write a block of data

cs0 <=1'b0;

esi <=1'b1;

addr <=3'b000;

read<=(isReadMode==1'b0 | efSt ate [6]== CfSt ate

[5]) ; //asserted for 01,10 as high bits , in

read mode

write <=(isReadMode==1'b1 | cfState [6]==

cfState [5]); //asserted for 01,10 as high

bits , in write mode

cfDatabusWrite<=~isReadMode;

cfDataReg<=(cfState==7'b00001OO) ?

writeBufferData : cfDataReg;

numSectorsRead<=(cfStatee==7'b1111110 &&

wordCount==8'b0) ? numSectorsRead+1'b1

numSectorsRead;

wordCount<=(cfState==7'b1111101) ? wordCount

+I1'bl : wordCount;

174

read9:

cfCmd<=(cfSt ate==7'b1111111 && wordCount==8'bO

) ? ((numSectorsRead>=sectorCount) ?

readStatus : read8) : cfCmd; //enters

readStatus or read8 at end

bufferData<=(cfState==7'b1O11111) ? cfData

bufferData;

bufferWr <=(isReadMode==1'b1 && cfState==7'

b1100000) ;

bufferAddr<=(cfState==7'b1111111) ? bufferAddr

+1'b1 : bufferAddr;

busy<=1'b1;

d

begin //
csO <=1'bl;

esi <=1'b1;

addr <=3'bO

read <=1'bl

write <=1'b

cfDatabusWN

cfDataReg <

debug [3] <=

if (pending

cfCmd<=r

pendingR

includes nop

;

rite <=1'bO;

=16'bO;

1'b1i;

lead) begin //service read request

eadO;

ead <=1'bO;

end

175

en

default:

busy<=1'b0;

end

endcase

end

end

end

endmodule

//reads two bytes of data from compact flash buffer , high byte

first

//input data should be of the form

//byte 0: word number

module cfBufferReader (clk , reset , enable , microData ,

write , read

input clk ;

bufferAddr ,

//system

bufferData) ;

clk

input reset ; //global reset

input enable; //1 when module is active

input write ; //write signal from microcontroller , active low

input read; //read signal from microcontroller , active low

input [15:0]

input [7:0]

output [7:0]

output [7:0]

bufferData;

microData;

dataReg;

bufferAddr;

//buffer data out

//microcontroller

/output

databus

register

//buffer read addr

176

dataReg ,

line

reg [7:0] bufferAddr ;

reg oldWrite; //write delayed by one cycle

reg oldRead; //read delayed by one cycle

reg [7:0] dataReg; //stores data to be driven on bus

reg highByte; //one when high byte of word is being requested

reg oldEnable; //enable delayed by one cycle

always @(posedge clk) begin

oldWrite<=write;

oldRead<=read ;

oldEnable<=enable;

if(reset) begin

highByte <=1'b1;

dataReg<=8'b0;

end

else begin

if (enable) begin

// if enable just stepped high, reset highByte

if (oldEnable==1'b0) begin

highByte<=1'bl;

end

//if write just stepped low, read a packet of data

else if ((write==1'b0) && (oldWrite==1'bl)) begin

bufferAddr <=microData;

177

end

//otherwise , if read just stepped low , load dataReg

appropriately

else if ((read==1'b0) && (oldRead==1'b1)) begin

dataReg<=highByte ? bufferData [15:8] bufferData

[7:0];

highByte<=~highByte;

end

end

end

end

endmodule

//writes two bytes of data to compact flash buffer , high byte

first

//input data should be of the form

//byte 0: word number

//byte 1: high data byte

//byte 2: low data byte

module cfBufferWriter (clk reset , enable , microData microWrite ,

bufferAddr

input clk ;

bufferData , bufferWrite) ;

//system clk

input reset ; //global reset

input enable; //1 when module is active

input [7:0] microData; //microcontroller

178

databus

from microcontroller , active

low

output [7:0]

output[15:0]

bufferAddr;

bufferData

7/buffer

// buffer

read addr line

data out

output bufferWrite;

reg [7:0] bufferAddr;

//buffer write line , active high

reg [15:0] bufferData;

reg bufferWrite;

reg oldWrite;

reg oldEnable;

reg pendingWrite;

reg [1:0]

//microWrite delayed by one cycle

/enable delayed by one cycle

when write to buffer is pending

/counts input packetspacketCount;

always @(posedge elk) begin

oldWrite<=microWrite;

oldEnable<=enable ;

if (reset) begin

pendingWrite <=1'bO;

bufferWrite <=1'bO;

end

else begin

if (enable) begin

179

//write signalinput microWrite;

//if enable just stepped high, reset packetCount and

pendingWrite

if (oldEnable==1'bO) begin

packetCount <=2'bO;

pendingWrite <=1'bO;

end

//if write just stepped low, read a packet of data

else if ((microWrite==1'bO) && (oldWrite==1'b1)) begin

packetCount <=(packetCount =2'bl1) ? 2'b1i

packet Count+ +1'bl;

case (packetCount)

2'bOO: bufferAddr<=microData;

2'bO1: bufferData<={microData,bufferData [7:0]};

2'b1O: bufferData<={bufferData [15:8], microData };

default : bufferDat a<=bufferDat a;

endcase

pendingWrite <=(packet Count ==2'b1O)

end

else begin

pendingWrite <=1'bO;

end

bufferWrite<=pendingWrite;

end

else begin

bufferWrite <=1'bO;

180

end

end

end

endmodule

181

module ether Controller (clk , reset , rxd , txd , modReset , fifoRead ,

fifoData , fifoEmpty , fifoUsedWords , sendRaw, led) ;

input elk ;

input reset

input rxd;

//system

//global

//serial

clk , 25MHz

reset , active

input line from wifi

input [7:0] fifoData ; //databus from

input fifoEmpty ; //high when fifo is empty

input [9:0] fifoUsedWords; /number of data words

output txd;

output fifoRead ;

output modReset;

output sendRaw;

of prep data

output led;

reg led;

reg fifoRead;

reg sendRaw;

//serial

/read

7/reset

/used

output line to wifi module

line for fifo , active high

line for wifi m

to force sending

odule, active low

raw data instead

reg [2:0]

reg [31:0]

state ; //state

initCount ;

for transmit

//used to

fsm

keep module inactive

designated amount

reg [2:0] cmd;

of time at startup

/used to select current command

182

high

module

fifo

in fifo

for

reg [7:0] byteCount;

stream

reg [19:0] waitCount;

reg sendingDataPacket;

reg commandReceived;

received via wifi

reg [7:0] command;

reg justSentStatus;

updates

//used to count bytes in send/recv

//used to wait during recv

//used to keep track of packet type

//used to signify a command has been

//stores command from wifi

//used to record sending of status

wire modReset ;

parameter

parameter

parameter

stores

parameter

parameter

parameter

parameter

parameter

init Per =375000000;

maxByteCount=8'h81; //max value of byteCount

lastInitAddr=7'h61; //last addr of init rom that

init params

readStart=7'h62; //first addr of read command

readEnd=7'h6C; //last addr of read command

preambleStart=7'h6D; // first addr of preamble

preambleEnd=7'h7C; //last addr of preamble

etherBaud=38400;

//transmit state enum

parameter waiting=3'b000;

183

parameter

parameter

parameter

parameter

//receive
parameter

parameter

parameter

//command
parameter

parameter

parameter

parameter

parameter

readRq=3'bOO1;

moveData=3'bO1O;

sendData=3'bO11;

doneData=3'b1OO;

state enum

rWaiting=3'blOO;

rMoveData=3'bl0l;

rWriteData=3'b11O;

enum

dolnit =3'bOOO;

doReadCmd=3'bOO1;

doReadData=3'bO1O;

doPreamble=3'bO11;

doSendData=3'b1OO ;

//header enum

parameter headernull=8'hff;

parameter header-data=8'hOO;

parameter header status=8'hO1;

parameter header-debug=8'h02;

/receive

parameter

command enum

command-start=8'h43

184

parameter

parameter

parameter

parameter

parameter

command-transmit-no=8'h30;

command-transmit-yes =8'h31;

command-data-prep=8'h32;

command-data-raw=8'h33;

command-null=8'hf;

// async-receiver module and connections

wire rxDataReady , rxDebug, rxldle;

wire [7:0] rxData;

asyncreceiver aAsyncreceiver (clk , rxd , reset , rxDataReady,

rxData , rxIdle , rxDebug);

defparam aAsync._receiver Baud=etherBaud;

//async-transmitter module and connections

reg txStart ;

wire txBusy;

reg [7:0] txData;

async-transmitter aAsync-transmitter (clk , txStart , txData, txd

, txBusy) ;

aAsync _transmitter .Baud=etherBaud;

// etherInit module and connections

reg [6:01 etherlAddr;

wire [7:0] etherIData;

etherInit aEtherInit (etherlAddr , clk , etherlData)

185

defparam

//etherRecvFIFO module and connections

reg [7:01 rfifoln ;

reg rfifoWrite , rfifoRead , rfifoClr ;

wire [7:01 rfifoOut ;

wire rfifoEmpty;

etherRecvFIFO aEtherRecvFIFO(rfifoln , rfifoWrite , rfifoRead , clk ,

rfifoClr , rfifoOut , rfifoEmpty)

assign modReset=~reset ;

always @(posedge clk) begin

init Count <=(initCount <init Per) ? initCount+1'b1 : initCount ;

if (reset | initCount<init Per)

st ate<=waiting;

fifoRead <=1'bO;

rfifoRead <=1'b0;

rfifoWrite <=1'b0;

rfifoClr <=1'bl;

rfifoIn <=8'h55;

txSt art <=1'b0;

etherlAddr <=7'bO;

cmd<=dolnit ;

byteCount <=8'b0;

led <=1'bO;

sendingDataPacket <=1'b0;

186

begin

commandReceived<=1'bO ;

command<=c ommand -null;

sendRaw<=1'bO;

justSentStatus <=1'b1;

end

else begin

led <=(cmd==doPreamble);

case (cmd)

dolnit: begin //initialize

fifoRead <=1'bO;

rfifoRead <=1'bO;

rfifoWrite <=1'bO;

rfifoClr <=1'bO;

txData<=(state=moveData) ? etherlData txData;

txStart<=(state~sendData);

etherIAddr<=(state waiting && etherlAddr>

lastInitAddr) ? readStart : ((state=moveData)

? etherIAddr+1'b1 etherIAddr);

cmd<=(state==waiting && etherIAddr>lastlnitAddr) ?

doReadCmd : cmd;

case (state)

waiting: state <=(txBusy==1'bO) ? moveData

waiting ;

moveData: state <-sendData;

187

sendData: state<=(txBusy==1'b1) ? waiting

sendData;

default state<=waiting;

endease

sendingDataPacket <=1'b1;

end

doReadCmd: begin //send read command

fifoRead <=1'bO;

rfifoRead <=1'bO;

rfifoWrite <=1'bO;

rfifoClr <=1'bl;

txData<=(state=moveData) ? etherlData txData;

txStart<=-(state-sendData);

etherIAddr<=(state moveData) ? etherlAddr+1'b1

etherIAddr -;

cmd<=(state waiting && etherlAddr>readEnd) ?

doReadData : cmd;

byteCount <=8'bO;

wait Count <=20'bO;

sendingDataPacket <=1'bl;

case (state)

waiting: state <=(txBusy==1'bO && etherlAddr<=

readEnd) ? moveData : waiting;

moveData: state<=sendData;

188

sendData: state<=(txBusy==1'b1) ? waiting

sendData;

default state<=waiting;

endcase

commandReceived <=1'b0;

command<=comm and -null;

end

doReadData: begin //read data

fifoRead <=1'b0;

rfifoRead <=1'bO;

rfifoClr <=1'b0;

etherIAddr<=preambleSt art;

waitCount<=(waitCount==20'hfffff ? waitCount

waitCount+1'bl);

cmd<=((wait Count >20'hfO000 byteCount==8' hff)

&& state-rWaiting) ? doPreamble doReadData

sendingDataPacket<=(state rWriteData && ((

byteCount ==8'h03 && rfifoln !=8'h30 && rfifoIn

!=8'h4f && justSentStatus==1'b0) I (

byteCount==8'h04 && rfifoIn !=8'hOD && rfifoIn

!=8'h4b && justSentStatus==1'bO)) ? 1'bO

sendingDataPacket); //checks if the third

received character is '0 ' , and fourth is <CR

>, if so, send a data packet; todo: do this

189

better

commandReceived<=(state-rWriteData & ((
byteCount==8'hO5 || byteCount==8'h06))) ? ((

byte Count==8'hO5) ? (r fi fo In command-start)

: ((byteCount==8'h06 && rfifoln!=

command-start) ? 1'b :commandReceived))

command Received;

command<=(s tate-rWriteData && commandReceived

-=1'bl && ((byteCount==8'hO7 || byteCount==8'

h08))) ? ((byteCount==8'hO7) ? rfifoln

byte Count==8'h08 && rfifoIn!=command) ?

command-null : command)) : command;

rfifoln <=-(state-rMoveData) ? rxData rfifoln

rfifoWrite <=(state-rWriteData);

byteCount <=(st ate rMoveData) ? byteCount+1'bi

byteCount;

case (state)

rWaiting: state <=(rxDataReady==1'b1) ?

rMoveData : rWaiting ;

rMoveData: stat e<=rWriteData;

rWriteData: state<=rWaiting;

default: stat e<=rWaiting;

endcase

end

doPreamble: begin //send preamble

190

fifoRead <=1'bO;

rfifoRead <=1'bO;

rfifoWrite <=1'bO;

byteCount <=8'bO;

wait Count <=20'bO;

if ((fifoUsedWords>maxByteCount) (

sendingDataPacket==-1'bO)) begin

txData<=(state-moveData) ? etherlData

txData;

txStart<=(state sendData);

etherIAddr<=(state=moveData) ? etherlAddr+1'

bi : etherlAddr ;

cmd<=(state waiting && etherIAddr>preambleEnd

) ? doSendData : cmd;

case(state)

waiting: state <=-(txBusy==1'bO && etherIAddr

<=preambleEnd) ? moveData : waiting;

moveData: state<=sendData;

sendData: state <=(txBusy==1'b1) ? waiting

: sendData;

default : state<=waiting;

endcase

end

c as e (command)

command-Aata-prep: sendRaw<=1'bO;

191

command-data-raw: sendRaw<=1'b1;

default: sendRaw<-sendRaw; //nop

endcase

end

doSendData: begin //transmit data

etherlAddr<=preambleStart ;// readStart

rfifoWrite <=l'bO ;

if (sendingDataPacket==1'bl) begin //sending

regular data packet

fifoRead <=(st ate readRq && (byteCount<

maxByteCount-1'b1)); //only read during

readRq

rfifoRead <=1'bO;

txData<=(state=moveData) ? ((byteCount=

maxByteCount) ? 8'hOD : ((byteCount

maxByteCount-1'bl) ? header-data : fifoData

S)) : txData;

justSentStatus <=1'bO;

end

else begin //sending other packet

fifoRead <=1'bO;

rfifoRead <=((st ate-readRq) && (byteCount<

maxByteCount-1'bl) && (rfifoEmpty==1'bO));

/only read during readRq

192

txData<=(state moveData) ? ((byteCount=

maxByteCount) ? 8'hOD ((byteCount

maxByteCount-1'bl) ? header-debug : ((

rfifoEmpty==1'b1) ? 8'hO rfifoOut)))

txData;

justSentStatus <=1'b1;

end

txStart<=(state-sendData);

waitCount <=(waitCount==20' h fffff ? wait Count

waitCount+1'bl);

byteCount<=-(state moveData) ? byteCount+1'bl

byteCount;

//cmd<=(stat e-waiting && byteCount>maxByteCount

) ? doReadCmd : cmd;

cmd<=(state doneData && waitCount>20'hfO00) ?

doReadCmd : cmd;

case(state)

waiting: state <=(byteCount>maxByteCount) ?

doneData : (((fifoEmpty==1'bO ||

sendingDataPacket==l'bO) && txBusy==1'bO) ?

readRq : waiting);

readRq: state <=moveData;

moveData: state<=sendData;

193

sendData: state <=-(txBusy==1'b1) ? waiting

sendData;

doneData: state<=doneData;

default state<=waiting;

endcase

end

endcase

end

end

endmodule

194

Bibliography

[1] S. B. Leeb, "A conjoint pattern recognition approach to nonintrusive load monitor-

ing," Ph. D. dissertation, Dept. Elect. Eng. Comput. Sci. , Mass. Inst. Technol. ,

Cambridge, MA, Feb. 1993.

[2] W. M. Siebert Circuits, Signals and Systems, The MIT Press, 1986.

[3] L. C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, 1997.

[4] S. Lang, Algebraic Number Theory, Springer-Verlag, 1994.

[5] J. M. Masley and H. L. Montgomery, "Cyclotomic fields with unique factorization,"

J. Reine Angew. Math. 286/287, pg. 248-256, 1976.

[6] W. Wichakool, A. Avestruz, R. W. Cox and S. B. Leeb, "Resolving Power Consump-

tion of Variable Power Electronic Loads Using Nonintrusive Monitoring," PESC 2007,

pg. 2765-2771, 2007.

[7] H. Cohen, A Course In Computational Algebraic Number Theory, Springer-Verlag,

1996.

[8] A. P. Dempster, N. M. Laird, D. B. Rubin, "Maximum Likelihood from Incomplete

Data via the EM Algorithm," Journal of the Royal Statistical Society, Series B 39:1-

38, 1977.

195

[9] M. Jamshidian, R. I. Jennrich, "Acceleration of the EM Algorithm by using Quasi-

Newton Methods," Journal of the Royal Statistical Society, Series B 59:569-587, 1997.

[10] S. B. Leeb, S. R. Shaw, and J. L. Kirtley, "Transient event detection in spectral

envelope estimates for nonintrusive load monitoring," IEEE Trans.

vol. 7, no. 3, pp. 1200-1210, Jul.

Power Del. ,

1995.

[11] S. R. Shaw, C. B. Abler, R. F. Lepard, D. Luo, S. B. Leeb, and L. K.

ford, "Instrumentation for high performance nonintrusive electrical load monitoring,"

Trans. ASME J. Sol. Energy Eng. , vol. 120, no. 3, pp. 224-229, Aug.

[12] S. R. Shaw, "System identification techniques and modeling for non-intrusive load

diagnostics," Ph. D. dissertation, Mass. Inst. , Technol. , Cambridge, MA, Feb. 2000.

Smart Grid: An Introduction," U. S. Department of Energy,

http://www. oe. energy. gov/1165. htm.

[14] U. S. Patent 5,548,527, "Programmable Electrical Energy Meter Utilizing a Non-

Volatile Memory," August 20, 1996.

[15] U. S. Patent 6,615,147, "Revenue Meter with Power Quality Features," September

2, 2003.

[16] U. S. Patent 7,525,423, "Automated Meter Reading Communication System and

Method," April 28, 2009.

[17] http://www.p3international.com/products/special/P4400/P4400-CE.html.

[18] F. Itakura, "Minimum Prediction Residual Principle Applied to Speech Recogni-

tion," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol ASSP-23,

February 1975, pp. 67-72.

196

Nor-

[13] "The

1998.

[19] R. E. Abbot and S. C. Hadden, EPRI Final Report CU-6623, "Requirements for an

Advanced Utility Load Monitoring System, December 1989.

[20] S. R. Shaw, "System identification techniques and modeling for nonintrusive load

diagnostics, Ph. D. dissertation, Massachusetts Institute of Technology, Cambridge,

MA, Feb. 2000.

197

